Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
EBioMedicine ; 30: 38-51, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29525572

RESUMEN

Müller glial cells (MGCs) represent the most plastic cell type found in the retina. Following injury, zebrafish and avian MGCs can efficiently re-enter the cell cycle, proliferate and generate new functional neurons. The regenerative potential of mammalian MGCs, however, is very limited. Here, we showed that N-methyl-d-aspartate (NMDA) damage stimulates murine MGCs to re-enter the cell cycle and de-differentiate back to a progenitor-like stage. These events are dependent on the recruitment of endogenous bone marrow cells (BMCs), which, in turn, is regulated by the stromal cell-derived factor 1 (SDF1)-C-X-C motif chemokine receptor type 4 (CXCR4) pathway. BMCs mobilized into the damaged retina can fuse with resident MGCs, and the resulting hybrids undergo reprogramming followed by re-differentiation into cells expressing markers of ganglion and amacrine neurons. Our findings constitute an important proof-of-principle that mammalian MGCs retain their regenerative potential, and that such potential can be activated via cell fusion with recruited BMCs. In this perspective, our study could contribute to the development of therapeutic strategies based on the enhancement of mammalian endogenous repair capabilities.


Asunto(s)
Células de la Médula Ósea/citología , Reprogramación Celular , Neuroglía/citología , Retina/citología , Células Amacrinas/citología , Células Amacrinas/efectos de los fármacos , Animales , Células de la Médula Ósea/efectos de los fármacos , Células de la Médula Ósea/metabolismo , Desdiferenciación Celular/efectos de los fármacos , Fusión Celular , Proliferación Celular/efectos de los fármacos , Reprogramación Celular/efectos de los fármacos , Quimiocina CXCL12/metabolismo , Ratones Transgénicos , N-Metilaspartato/toxicidad , Neuroglía/efectos de los fármacos , Receptores CXCR4/metabolismo , Células Ganglionares de la Retina/citología , Células Ganglionares de la Retina/efectos de los fármacos , Transducción de Señal
2.
J Clin Invest ; 126(8): 3104-16, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27427986

RESUMEN

Vision impairments and blindness caused by retinitis pigmentosa result from severe neurodegeneration that leads to a loss of photoreceptors, the specialized light-sensitive neurons that enable vision. Although the mammalian nervous system is unable to replace neurons lost due to degeneration, therapeutic approaches to reprogram resident glial cells to replace retinal neurons have been proposed. Here, we demonstrate that retinal Müller glia can be reprogrammed in vivo into retinal precursors that then differentiate into photoreceptors. We transplanted hematopoietic stem and progenitor cells (HSPCs) into retinas affected by photoreceptor degeneration and observed spontaneous cell fusion events between Müller glia and the transplanted cells. Activation of Wnt signaling in the transplanted HSPCs enhanced survival and proliferation of Müller-HSPC hybrids as well as their reprogramming into intermediate photoreceptor precursors. This suggests that Wnt signaling drives the reprogrammed cells toward a photoreceptor progenitor fate. Finally, Müller-HSPC hybrids differentiated into photoreceptors. Transplantation of HSPCs with activated Wnt functionally rescued the retinal degeneration phenotype in rd10 mice, a model for inherited retinitis pigmentosa. Together, these results suggest that photoreceptors can be generated by reprogramming Müller glia and that this approach may have potential as a strategy for reversing retinal degeneration.


Asunto(s)
Reprogramación Celular , Células Ependimogliales/citología , Neuroglía/citología , Células Fotorreceptoras/citología , Retina/crecimiento & desarrollo , Células Madre/citología , Animales , Diferenciación Celular , Fusión Celular , Linaje de la Célula , Proliferación Celular , Electrorretinografía , Femenino , Regulación de la Expresión Génica , Células Madre Hematopoyéticas/citología , Masculino , Ratones , Ratones Transgénicos , Fenotipo , Células Fotorreceptoras/patología , Retina/citología , Degeneración Retiniana/patología , Transducción de Señal , Proteínas Wnt/metabolismo
3.
Invest Ophthalmol Vis Sci ; 55(6): 3555-62, 2014 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-24825107

RESUMEN

PURPOSE: The process of photoreceptor cell death in retinitis pigmentosa is still not well characterized, and identification of common mechanisms will be instrumental for development of therapeutic strategies. Here we investigated activation of Bax in rd1, P23H transgenic, and Rho knockout retinas. METHODS: Bax activation was evaluated by immunofluorescence using anti-activated Bax-specific antibodies and by Western blotting on mitochondrial protein extracts. Knockdown of cathepsin D, calpain 1, and calpain 2 was achieved by short hairpin RNA (shRNA) delivery in rd1 mutant photoreceptors cells differentiated from retinal neurospheres. The mechanism of Bax activation through calpains was evaluated in vivo by intravitreal injection of calpastatin. RESULTS: We defined activation and mitochondrial localization of Bax as well as activation of calpains and cathepsin D in the three models of retinitis pigmentosa. Taking advantage of an in vitro culture system for rd1 mutant photoreceptors, we unraveled the mechanism of Bax activation. We demonstrated that calpain 1 and cathepsin D contributed to activation of Bax and to apoptosis-inducing factor (Aif) nuclear translocation. In vivo interference with calpain activity blocks Bax activation in the rd1 and Rho knockout retinas and reduces activation in the P23H transgenic retina. CONCLUSIONS: Activation of Bax was observed in all three models of retinitis pigmentosa and leads to neurodamage by localization at the mitochondrion. Our data suggest that Bax can be envisaged as one of the promising target molecules for restraining photoreceptor degeneration.


Asunto(s)
Proteínas de Unión al Calcio/farmacología , Células Fotorreceptoras de Vertebrados/patología , ARN/genética , Retinitis Pigmentosa/genética , Activación Transcripcional/efectos de los fármacos , Proteína X Asociada a bcl-2/genética , Animales , Apoptosis , Western Blotting , Calpaína/antagonistas & inhibidores , Células Cultivadas , Inhibidores de Cisteína Proteinasa/farmacología , Modelos Animales de Enfermedad , Etiquetado Corte-Fin in Situ , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Mutación , Células Fotorreceptoras de Vertebrados/efectos de los fármacos , Células Fotorreceptoras de Vertebrados/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Retinitis Pigmentosa/metabolismo , Retinitis Pigmentosa/patología , Proteína X Asociada a bcl-2/biosíntesis , Proteína X Asociada a bcl-2/efectos de los fármacos
4.
Cell Rep ; 4(2): 271-86, 2013 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-23850287

RESUMEN

Cell-fusion-mediated somatic-cell reprogramming can be induced in culture; however, whether this process occurs in mammalian tissues remains enigmatic. Here, we show that upon activation of Wnt/ß-catenin signaling, mouse retinal neurons can be transiently reprogrammed in vivo back to a precursor stage. This occurs after their spontaneous fusion with transplanted hematopoietic stem and progenitor cells (HSPCs). Moreover, we demonstrate that retinal damage is essential for cell-hybrid formation in vivo. Newly formed hybrids can proliferate, commit to differentiation toward a neuroectodermal lineage, and finally develop into terminally differentiated neurons. This results in partial regeneration of the damaged retinal tissue, with functional rescue. Following retinal damage and induction of Wnt/ß-catenin signaling, cell-fusion-mediated reprogramming also occurs after endogenous recruitment of bone-marrow-derived cells in the eyes. Our data demonstrate that in vivo reprogramming of terminally differentiated retinal neurons after their fusion with HSPCs is a potential mechanism for tissue regeneration.


Asunto(s)
Neuronas/fisiología , Regeneración/fisiología , Retina/fisiología , Células Madre/fisiología , Proteínas Wnt/metabolismo , Vía de Señalización Wnt , beta Catenina/metabolismo , Animales , Diferenciación Celular/fisiología , Fusión Celular , Ratones , N-Metilaspartato , Neuronas/citología , Neuronas/metabolismo , Retina/citología , Retina/efectos de los fármacos , Retina/metabolismo , Degeneración Retiniana/inducido químicamente , Degeneración Retiniana/metabolismo , Degeneración Retiniana/patología , Células Madre/citología , Células Madre/metabolismo , Transcriptoma , Proteínas Wnt/genética , beta Catenina/genética
5.
Adv Exp Med Biol ; 713: 137-59, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21432018

RESUMEN

Cell-cell fusion is a natural process that occurs not only during development, but as has emerged over the last few years, also with an important role in tissue regeneration. Interestingly, in-vitro studies have revealed that after fusion of two different cell types, the developmental potential of these cells can change. This suggests that the mechanisms by which cells differentiate during development to acquire their identities is not irreversible, as was considered until a few years ago. To date, it is well established that the fate of a cell can be changed by a process known as reprogramming. This mainly occurs in two different ways: the differentiated state of a cell can be reversed back into a pluripotent state (pluripotent reprogramming), or it can be switched directly to a different differentiated state (lineage reprogramming). In both cases, these possibilities of obtaining sources of autologous somatic cells to maintain, replace or rescue different tissues has provided new and fundamental insights in the stem-cell-therapy field. Most interestingly, the concept that cell reprogramming can also occur in vivo by spontaneous cell fusion events is also emerging, which suggests that this mechanism can be implicated not only in cellular plasticity, but also in tissue regeneration. In this chapter, we will summarize the present knowledge of the molecular mechanisms that mediate the restoration of pluripotency in vitro through cell fusion, as well as the studies carried out over the last 3 decades on lineage reprogramming, both in vitro and in vivo. How the outcome of these studies relate to regenerative medicine applications will also be discussed.


Asunto(s)
Fusión Celular , Transdiferenciación Celular , Reprogramación Celular , Células Madre Pluripotentes/fisiología , Medicina Regenerativa , Animales , Linaje de la Célula , Humanos , Técnicas de Transferencia Nuclear , Células Madre Pluripotentes/citología
6.
EMBO Mol Med ; 3(3): 118-28, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21268285

RESUMEN

Despite the recent success of gene-based complementation approaches for genetic recessive traits, the development of therapeutic strategies for gain-of-function mutations poses great challenges. General therapeutic principles to correct these genetic defects mostly rely on post-transcriptional gene regulation (RNA silencing). Engineered zinc-finger (ZF) protein-based repression of transcription may represent a novel approach for treating gain-of-function mutations, although proof-of-concept of this use is still lacking. Here, we generated a series of transcriptional repressors to silence human rhodopsin (hRHO), the gene most abundantly expressed in retinal photoreceptors. The strategy was designed to suppress both the mutated and the wild-type hRHO allele in a mutational-independent fashion, to overcome mutational heterogeneity of autosomal dominant retinitis pigmentosa due to hRHO mutations. Here we demonstrate that ZF proteins promote a robust transcriptional repression of hRHO in a transgenic mouse model of autosomal dominant retinitis pigmentosa. Furthermore, we show that specifically decreasing the mutated human RHO transcript in conjunction with unaltered expression of the endogenous murine Rho gene results in amelioration of disease progression, as demonstrated by significant improvements in retinal morphology and function. This zinc-finger-based mutation-independent approach paves the way towards a 'repression-replacement' strategy, which is expected to facilitate widespread applications in the development of novel therapeutics for a variety of disorders that are due to gain-of-function mutations.


Asunto(s)
Técnicas de Silenciamiento del Gen/métodos , Terapia Genética/métodos , Proteínas Represoras/metabolismo , Retinitis Pigmentosa/terapia , Rodopsina/biosíntesis , Transcripción Genética , Animales , Modelos Animales de Enfermedad , Regulación hacia Abajo , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Oftalmoscopía , Proteínas Represoras/genética , Retinitis Pigmentosa/genética , Rodopsina/genética
7.
J Neurochem ; 115(4): 930-40, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20807308

RESUMEN

Photoreceptor degeneration is the hallmark of a group of inherited blinding diseases collectively termed retinitis pigmentosa (RP); a major cause of blindness in humans. RP is at present untreatable and the underlying neurodegenerative mechanisms are largely unknown, even though the genetic causes are often established. The activation of calpain-type proteases may play an important role in cell death in various neuronal tissues, including the retina. We therefore tested the efficacy of two different calpain inhibitors in preventing cell death in the retinal degeneration (rd1) human homologous mouse model for RP. Pharmacological inhibition of calpain activity in rd1 organotypic retinal explants had ambiguous effects on photoreceptor viability. Calpain inhibitor XI had protective effects when applied for short periods of time (16 h) but demonstrated substantial levels of toxicity in both wild-type and rd1 retina when used over several days. In contrast, the highly specific calpain inhibitor calpastatin peptide reduced photoreceptor cell death in vitro after both short and prolonged exposure, an effect that was also evident after in vivo application via intravitreal injection. These findings highlight the importance of calpain activation for photoreceptor cell death but also for photoreceptor survival and propose the use of highly specific calpain inhibitors to prevent or delay RP.


Asunto(s)
Calpaína/antagonistas & inhibidores , Glicoproteínas/toxicidad , Células Fotorreceptoras de Vertebrados/efectos de los fármacos , Células Fotorreceptoras de Vertebrados/enzimología , Retinitis Pigmentosa/inducido químicamente , Retinitis Pigmentosa/prevención & control , Animales , Proteínas de Unión al Calcio/uso terapéutico , Calpaína/metabolismo , Muerte Celular/efectos de los fármacos , Muerte Celular/fisiología , Glicoproteínas/uso terapéutico , Humanos , Ratones , Ratones Endogámicos C3H , Ratones Transgénicos , Técnicas de Cultivo de Órganos , Células Fotorreceptoras de Vertebrados/patología , Degeneración Retiniana/inducido químicamente , Degeneración Retiniana/enzimología , Degeneración Retiniana/patología , Degeneración Retiniana/prevención & control , Retinitis Pigmentosa/enzimología , Retinitis Pigmentosa/patología
8.
Int J Dev Biol ; 54(11-12): 1575-87, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-21305473

RESUMEN

Pluripotency can be defined as the ability of individual cells to initiate all of the lineages of the mature organism in response to signals from the environment. It has long been assumed that during development, pluripotency is progressively and irreversibly lost through a mechanism that requires strict coordination of the signalling pathways involved in cell proliferation, differentiation and migration. However, recent breakthroughs have highlighted evidence that terminally differentiated cells can be reprogrammed into pluripotent stem cells, prompting a re-evaluation of the reversibility of cell differentiation. Generations of pluripotent cells can arise from somatic cells following ectopic expression of specific transcription factors; however, these factors might well not be the unique essential reprogramming factors. Furthermore, they can be the end-point targets of signalling pathways. Indeed, recent evidence shows that modulation of the Wnt/beta-catenin, MAPK/ERK, TGF-beta or PI3K/Akt signalling pathways strikingly enhances somatic-cell reprogramming. Nevertheless, we still know relatively little about the underlying mechanisms by which somatic cells de-differentiate to pluripotency. In this review, we provide an overview of the signalling pathways promoting the re-acquisition and maintenance of pluripotency and we discuss the possible mechanisms underlying nuclear reprogramming.


Asunto(s)
Diferenciación Celular/genética , Linaje de la Célula , Reprogramación Celular , Células Madre Pluripotentes , Transducción de Señal , Animales , Humanos , Células Madre Pluripotentes/citología , Factores de Transcripción/genética
9.
J Virol ; 81(20): 11372-80, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17699581

RESUMEN

Severe inherited retinal diseases, such as retinitis pigmentosa and Leber congenital amaurosis, are caused by mutations in genes preferentially expressed in photoreceptors. While adeno-associated virus (AAV)-mediated gene transfer can correct retinal pigment epithelium (RPE) defects in animal models, approaches for the correction of photoreceptor-specific diseases are less efficient. We evaluated the ability of novel AAV serotypes (AAV2/7, AAV2/8, AAV2/9, AAV2rh.43, AAV2rh.64R1, and AAV2hu.29R) in combination with constitutive or photoreceptor-specific promoters to improve photoreceptor transduction, a limiting step in photoreceptor rescue. Based on a qualitative analysis, all AAV serotypes tested efficiently transduce the RPE as well as rod and cone photoreceptors after subretinal administration in mice. Interestingly, AAV2/9 efficiently transduces Müller cells. To compare photoreceptor transduction from different AAVs and promoters in both a qualitative and quantitative manner, we designed a strategy based on the use of a bicistronic construct expressing both enhanced green fluorescent protein and luciferase. We found that AAV2/8 and AAV2/7 mediate six- to eightfold higher levels of in vivo photoreceptor transduction than AAV2/5, considered so far the most efficient AAV serotype for photoreceptor targeting. In addition, following subretinal administration of AAV, the rhodopsin promoter allows significantly higher levels of photoreceptor expression than the other ubiquitous or photoreceptor-specific promoters tested. Finally, we show that AAV2/7, AAV2/8, and AAV2/9 outperform AAV2/5 following ex vivo transduction of retinal progenitor cells differentiated into photoreceptors. We conclude that AAV2/7 or AAV2/8 and the rhodopsin promoter provide the highest levels of photoreceptor transduction both in and ex vivo and that this may overcome the limitation to therapeutic success observed so far in models of inherited severe photoreceptor diseases.


Asunto(s)
Dependovirus/genética , Células Fotorreceptoras/metabolismo , Transducción Genética/métodos , Animales , Vectores Genéticos , Ratones , Regiones Promotoras Genéticas , Retina/citología , Rodopsina/genética , Serotipificación , Transducción Genética/normas
10.
Hum Mol Genet ; 16(14): 1699-707, 2007 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-17517693

RESUMEN

PRPF3 is an element of the splicing machinery ubiquitously expressed, yet mutations in this gene are associated with a tissue-specific phenotype: autosomal dominant retinitis pigmentosa (RP). Here, we studied the subcellular localization of endogenous- and mutant-transfected PRPF3. We found that (i) subcellular distribution of the endogenous wild-type protein co-localizes with small nuclear ribonucleoproteins, partially with a nucleolar marker and accumulates in speckles labeled by SC35; (ii) in human retinas, PRPF3 does not show a distinctive abundance in photoreceptors, the cells affected in RP and (iii) the RP causing mutant PRPF3, differently from the wild-type protein, forms abnormally big aggregates in transfected photoreceptor cells. Aggregation of T494M mutant PRPF3 inside the nucleus triggers apoptosis only in photoreceptor cells. On the basis of the observation that mutant PRPF3 accumulates in the nucleolus and that transcriptional, translational and proteasome inhibition can induce this phenomenon in non-photoreceptor cells, we hypothesize that mutation affects splicing factor recycling. Noteworthy, accumulation of the mutant protein in big aggregates also affects distribution of some other splicing factors. Our data suggest that the mutant protein has a cell-specific dominant effect in rod photoreceptors while appears not to be harmful to epithelial and fibroblast cells.


Asunto(s)
Mutación , Proteínas Nucleares/genética , Proteínas Nucleares/fisiología , Degeneración Retiniana/genética , Ribonucleoproteína Nuclear Pequeña U4-U6/genética , Ribonucleoproteína Nuclear Pequeña U4-U6/fisiología , Transporte Activo de Núcleo Celular , Empalme Alternativo , Células Epiteliales/metabolismo , Fibroblastos/metabolismo , Perfilación de la Expresión Génica , Genes Dominantes , Células HeLa , Humanos , Fenotipo , Complejo de la Endopetidasa Proteasomal/metabolismo , Retina/metabolismo , Células Fotorreceptoras Retinianas Bastones/metabolismo
11.
Proc Natl Acad Sci U S A ; 103(46): 17366-71, 2006 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-17088543

RESUMEN

Molecular mechanisms underlying apoptosis in retinitis pigmentosa, as in other neurodegenerative diseases, are still elusive, and this fact hampers the development of a cure for this blinding disease. We show that two apoptotic pathways, one from the mitochondrion and one from the endoplasmic reticulum, are coactivated during the degenerative process in an animal model of retinitis pigmentosa, the rd1 mouse. We found that both AIF and caspase-12 translocate to the nucleus of dying photoreceptors in vivo and in an in vitro cellular model. Translocation of both apoptotic factors depends on changes in intracellular calcium homeostasis and on calpain activity. Knockdown experiments defined that AIF plays the major role in this apoptotic event, whereas caspase-12 has a reinforcing effect. This study provides a link between two executor caspase-independent apoptotic pathways involving mitochondrion and endoplasmic reticulum in a degenerating neuron.


Asunto(s)
Factor Inductor de la Apoptosis/metabolismo , Apoptosis/efectos de los fármacos , Caspasa 12/metabolismo , Glicoproteínas/farmacología , Degeneración Retiniana/enzimología , Degeneración Retiniana/patología , Animales , Calcio/metabolismo , Bloqueadores de los Canales de Calcio/farmacología , Calpaína/metabolismo , Diferenciación Celular , Células Cultivadas , Activación Enzimática/efectos de los fármacos , Ratones , Células Fotorreceptoras/metabolismo , Células Fotorreceptoras/patología
12.
Apoptosis ; 11(9): 1629-41, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16820963

RESUMEN

Co-activation and cross-talk of different apoptotic pathways have been described in several systems however, the differential contributions of the different executors have not been well characterized. Here we report the co-translocation to the nucleus of caspase-12 and AIF in response to two endoplasmic reticulum (ER) stresses: protein misfolding and disruption of calcium homeostasis. As seen by treatment with pan-caspase inhibitor and calpain inhibitors, apoptosis is not mediated by executor caspases but by calpains. By reduction of AIF or caspase-12 expression we unraveled that AIF primarily controls apoptosis caused by changes in calcium homeostasis while caspase-12 has a main role in programmed cell death induced by protein misfolding. Nevertheless, the two apoptotic factors appear to reinforce each other during the apoptotic process, confirming that while the first response primarily involves one organelle, mitochondria and ER can influence each other in the apoptotic event.


Asunto(s)
Factor Inductor de la Apoptosis/fisiología , Apoptosis/fisiología , Caspasa 12/fisiología , Retículo Endoplásmico/fisiología , Receptor Cross-Talk/fisiología , Transducción de Señal/fisiología , Animales , Factor Inductor de la Apoptosis/metabolismo , Calcio/metabolismo , Bloqueadores de los Canales de Calcio/farmacología , Caspasa 12/metabolismo , Retículo Endoplásmico/efectos de los fármacos , Ratones , Mitocondrias/metabolismo , Modelos Biológicos , Células 3T3 NIH , Pliegue de Proteína , Transporte de Proteínas/fisiología , Interferencia de ARN , Tapsigargina/efectos adversos , Tapsigargina/farmacología , Distribución Tisular , Transfección , Tunicamicina/efectos adversos , Tunicamicina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA