Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Biol Sci ; 290(1995): 20222417, 2023 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-36987638

RESUMEN

Metabarcoding techniques have revolutionized ecological research in recent years, facilitating the differentiation of cryptic species and revealing previously hidden diversity. In the current scenario of climate change and ocean acidification, biodiversity loss is one of the main threats to marine ecosystems. Here, we explored the effects of ocean acidification on marine benthic communities using DNA metabarcoding to assess the diversity of algae and metazoans. Specifically, we examined the natural pH gradient generated by the Fuencaliente CO2 vent system, located near La Palma Island (Canary Islands). High-resolution COI metabarcoding analyses revealed high levels of taxonomic diversity in an acidified natural area for the first time. This high number of species arises from the detection of small and cryptic species that were previously undetectable by other techniques. Such species are apparently tolerant to the acidification levels expected in future oceans. Hence and following our results, future subtropical communities are expected to keep high biodiversity values under an acidification scenario, although they will tend toward overall miniaturization due to the dominance of small algal and invertebrate species, leading to changes in ecosystem functions.


Asunto(s)
Ecosistema , Agua de Mar , Dióxido de Carbono/análisis , Concentración de Iones de Hidrógeno , Océanos y Mares , Biodiversidad , Código de Barras del ADN Taxonómico
2.
Mar Environ Res ; 181: 105759, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36191454

RESUMEN

Large brown macroalgae are foundational threatened species in coastal ecosystems from the subtropical northeastern Atlantic, where they have exhibited a drastic decline in recent years. This study describes the potential habitat of Gongolaria abies-marina, its current distribution and conservation status, and the major drivers of population decline. The results show a strong reduction of more than 97% of G. abies-marina populations in the last thirty years and highlight the effects of drivers vary in terms of spatial heterogeneity. A decrease in the frequency of high waves and high human footprint are the principal factors accounting for the long-term decline in G. abies-marina populations. UV radiation and sea surface temperature have an important correlation only in certain locations. Both the methodology and the large amount of data analyzed in this study provide a valuable tool for the conservation and restoration of threatened macroalgae.


Asunto(s)
Abies , Phaeophyceae , Algas Marinas , Humanos , Animales , Ecosistema , Bosques
3.
Ecol Evol ; 10(15): 7963-7970, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32788953

RESUMEN

Recurrent sea urchin mass mortality has recently affected eastern Atlantic populations of the barren-forming sea urchin Diadema africanum. This new episode of die-off affords the opportunity to determine common meteorological and oceanographic conditions that may promote disease outbreaks. The population dynamics of this sea urchin species are well known-urchin barrens have persisted for many decades along most of the coastlines off the archipelagos of Madeira, Selvages, and the Canary Islands, where they limit macroalgae biomass growth. However, this new and explosive mortality event decimated the sea urchin population by 93% on Tenerife and La Palma Islands. Two severe episodes of southwestern rough sea that led to winter storms, in February 2010 (Xynthia) and February 2018 (Emma), preceded both mass mortality events. The autumn and winter months of those years were anomalous and characterized by swells with an average wave height above 2 m that hit the south and southwest sides of the islands. The amoeba Paramoeba brachiphila was the only pathogen isolated this time from the moribund and dead sea urchins, suggesting that the amoeba was the primary cause of the mortality. This new sea urchin die-off event supports the "killer-storm" hypothesis that has been already described for western Atlantic coasts. These anomalous southwest storms during winters generate pronounced underwater sediment movement and large-scale vertical mixing, detected in local tide gauge, which may promote paramoebiasis. This study presents valuable insights about climate-mediated changes in disease frequency and its impacts on the future of coastal marine ecosystems in the Atlantic.

4.
J Phycol ; 56(2): 346-357, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31849038

RESUMEN

The brown alga Lobophora (Dictyotales, Phaeophyceae) is an important macroalga in the North-eastern Atlantic archipelagos (i.e., Macaronesia). Notably in the Canaries it can dominate benthic assemblages. While the genus has been the subject of several ecological studies in the Canaries, no study has yet been conducted to assess species-level diversity of Lobophora in Macaronesia. We reassessed the diversity of Lobophora in Macaronesia, reporting the presence of seven species (L. caboverdeana sp. nov., L. canariensis, L. dagamae sp. nov., L. delicata, L. dispersa, L. littlerorum, and L. schneideri). Lobophora spp. from Macaronesia are morphologically and ecologically distinguishable. In the Canaries, L. schneideri dominates the photophilic assemblages from the intertidal to 20-30 m depth. Lobophora dagamae sp. nov. grows in less illuminated shallow habitats, and replaces L. schneideri from 30 to ~80 m. Lobophora canariensis also has a wide vertical distribution, from the intertidal to deep waters, while L. delicata, L. dispersa and L. littlerorum grow in shallow waters. The dominance of species with an upright habit versus prostrate or crustose species may be mediated by the pressure of herbivores. Four species have an amphi-Atlantic distribution: L. littlerorum, L. canariensis, L. delicata, and L. schneideri. Lobophora schneideri and L. delicata are furthermore distributed in the Mediterranean Sea. By sampling a pivotal region in the Atlantic, this study significantly improves our knowledge of Lobophora biogeography in the Atlantic Ocean. Macaronesia constitutes a species-poor region for Lobophora where no diversification events occurred, and a region of overlap between the Greater Caribbean and the Indo-Pacific.


Asunto(s)
Phaeophyceae , Océano Atlántico , Región del Caribe , Mar Mediterráneo , Filogenia
5.
Mar Environ Res ; 152: 104789, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31522874

RESUMEN

Volcanic CO2 vents are useful environments for investigating the biological responses of marine organisms to changing ocean conditions (Ocean acidification, OA). Marine shelled molluscs are highly sensitive to changes in seawater carbonate chemistry. In this study, we investigated the effects of reduced pH on the intertidal gastropod, Phorcus sauciatus, in a volcanic CO2 vent off La Palma Island (Canary Islands, North East Atlantic Ocean), a location with a natural pH gradient ranging from 7.0 to 8.2 over the tidal cycles. Density and size-frequency distribution, shell morphology, shell integrity, fracture resistance, and desiccation tolerance were evaluated between populations from control and CO2 vent sites. We found no effects of reduced pH on population parameters or desiccation tolerance across the pH gradient, but significant differences in shell morphology, shell integrity, and fracture resistance were detected. Individuals from the CO2 vent site exhibited a higher shell aspect ratio, greater percentages of shell dissolution and break, and compromised shell strength than those from the control site. Our results highlight that long-term exposure to high pCO2 can negatively affect the shell features of P. sauciatus but may not have a significant effect on population performance. Moreover, we suggest that loss of shell properties could lead to changes in predator-prey interactions.


Asunto(s)
Gastrópodos , Animales , Océano Atlántico , Dióxido de Carbono , Gastrópodos/fisiología , Concentración de Iones de Hidrógeno , Agua de Mar , España
6.
Mar Environ Res ; 136: 99-105, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29478765

RESUMEN

Primary production and respiration rates were studied for six seaweed species (Cystoseira abies-marina, Lobophora variegata, Pterocladiella capillacea, Canistrocarpus cervicornis, Padina pavonica and Corallina caespitosa) from Subtropical North-East Atlantic, to estimate the combined effects of different pH and temperature levels. Macroalgal samples were cultured at temperature and pH combinations ranging from current levels to those predicted for the next century (19, 21, 23, 25 °C, pH: 8.1, 7.7 and 7.4). Decreased pH had a positive effect on short-term production of the studied species. Raised temperatures had a more varied and species dependent effect on short term primary production. Thermophilic algae increased their production at higher temperatures, while temperate species were more productive at lower or present temperature conditions. Temperature also affected algal respiration rates, which were higher at low temperature levels. The results suggest that biomass and productivity of the more tropical species in coastal ecosystems would be enhanced by future ocean conditions.


Asunto(s)
Dióxido de Carbono/análisis , Agua de Mar/química , Algas Marinas/fisiología , Temperatura , Ecosistema , Concentración de Iones de Hidrógeno , Océanos y Mares
7.
Mar Environ Res ; 120: 202-13, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27591516

RESUMEN

Echinometra viridis previously was considered a cryptic species unable to control the development and growth of macroalgae on coral reefs. Its role as a herbivore was seen as minor compared to other grazers present on the reef. However, the present disturbed state of some reefs has highlighted the role played by this sea-urchin. Combining field data with experiments on the Caribbean coast of Panama, we demonstrate that the current community organization on disturbed coral reefs in the Mesoamerican Caribbean is largely due to the action of E. viridis. It is the most abundant sea-urchin species, together with two others (Diadema antillarum and Echinometra lucunter). Field data also indicate that the relationship between its density and the abundance of macroalgae is stronger and it is more negative in impact than those of the other two. However, the niche this urchin exploits most efficiently is confined to leeward reefs with low levels of sedimentation. Outside these habitats, their populations are not decisive in controlling macroalgal growth. Grazing experiments showed that E. viridis consumes more fresh macroalgae per day and per weight of sea-urchin, and is a more effective grazer than D. antillarum or E. lucunter. E. viridis showed food preferences for early-successional turf macroalgae (Acanthophora spicifera), avoiding the less palatable late-successional and fleshy macroalgae (Lobophora variegata, Halimeda opuntia). However, it becomes a generalist herbivore feeding on all varieties of macroalgae when resources are scarce. H. opuntia is the macroalga that most resists E. viridis activity, which may explain its wide distribution.


Asunto(s)
Arrecifes de Coral , Monitoreo del Ambiente , Herbivoria , Erizos de Mar/fisiología , Animales , Antozoos , Ecosistema , Panamá , Densidad de Población , Algas Marinas
8.
Mar Pollut Bull ; 76(1-2): 203-13, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-24045124

RESUMEN

In this paper we develop a tool to assess the impact of fishing on ecosystem functioning in shallow rocky reefs. The relationships between biological parameters (fishes, sea urchins, seaweeds), and fishing activities (fish traps, boats, land-based fishing, spearfishing) were tested in La Palma island (Canary Islands). Data from fishing activities and biological parameters were analyzed using principal component analyses. We produced two models using the first component of these analyses. This component was interpreted as a new variable that described the fishing pressure and the conservation status at each studied site. Subsequently the scores on the first axis were mapped using universal kriging methods and the models obtained were extrapolated across the whole island to display the expected fishing pressure and conservation status more widely. The fishing pressure and conservation status models were spatially related; zones where fishing pressure was high coincided with zones in the unhealthiest ecological state.


Asunto(s)
Conservación de los Recursos Naturales/métodos , Ecosistema , Explotaciones Pesqueras/métodos , Análisis Multivariante , España
9.
Mar Environ Res ; 77: 120-8, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22513243

RESUMEN

The present work analysed the main changes in subtidal algal assemblages in the last decade in an oceanic archipelago (Canary Islands--eastern Atlantic Ocean). Changes result from increases in cover of ephemeral benthic algae, such as the non-native chlorophyte Pseudotetraspora marina and the native cyanophytes Blennothrix lyngbyacea, Schizothrix calcicola and Schizothrix mexicana. Ephemeral algae overgrow subtidal assemblages which are extensively dominated by Lobophora variegata, but competitively do not exclude other species. Increases in the abundance of species coincided with a warming of about 2 °C in surface seawater temperature (SST) linked to the weakening of the Cold Canary Current and the Northwestern African upwelling. Shifts in the distribution and cover of ephemeral species follow the SST gradient from warmer waters in the western islands to colder waters in the eastern ones. While in the warmest western islands, species have spread quickly colonizing all type of substrates in just a few years (2005-2008), the occurrence of ephemerals towards the coldest eastern islands is yet inconspicuous.


Asunto(s)
Biota , Chlorophyta/crecimiento & desarrollo , Cianobacterias/crecimiento & desarrollo , Calentamiento Global , Análisis de Varianza , Océano Atlántico , Dinámica Poblacional , España , Especificidad de la Especie , Temperatura , Movimientos del Agua
10.
Mar Environ Res ; 66(2): 259-70, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18479745

RESUMEN

Diadema aff. antillarum performs a key role in organizing and structuring rocky macroalgae assemblages in the Canary Islands. Densities of D. aff. antillarum higher than 2 individuals m(-2) are found to drastically reduce non-crustose macroalgal cover to below 30% and wave exposure appears as a major factor determining sea urchin density, which decreases with exposure level. Substrates containing >20% sand limit urchin to under 1 individual m(-2) but high relief rocky habitats show higher density. Moreover, several anthropogenic factors (number of islanders and tourists per coastal perimeter, and number of operational fishing boats) were positively correlated with urchin abundance. A trend of increasing urchin density through time was found, although well structured marine systems found at Mar de Las Calmas Marine Protected Area and at the no-take area of La Graciosa Marine Protected Area do not seem to follow this general trend.


Asunto(s)
Ecosistema , Eucariontes/crecimiento & desarrollo , Erizos de Mar/fisiología , Animales , Biodiversidad , Geografía , Densidad de Población , Dinámica Poblacional , Agua de Mar , España , Movimientos del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...