Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 142
Filtrar
1.
Microbiol Spectr ; 12(2): e0352623, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38206035

RESUMEN

Candida auris is an emerging yeast pathogen of major concern because of its ability to cause hospital outbreaks of invasive candidiasis and to develop resistance to antifungal drugs. A majority of C. auris isolates are resistant to fluconazole, an azole drug used for the treatment of invasive candidiasis. Mechanisms of azole resistance are multiple, including mutations in the target gene ERG11 and activation of the transcription factors Tac1b and Mrr1, which control the drug transporters Cdr1 and Mdr1, respectively. We investigated the role of the transcription factor Upc2, which is known to regulate the ergosterol biosynthesis pathway and azole resistance in other Candida spp. Genetic deletion and hyperactivation of Upc2 by epitope tagging in C. auris resulted in drastic increases and decreases in susceptibility to azoles, respectively. This effect was conserved in strains with genetic hyperactivation of Tac1b or Mrr1. Reverse transcription PCR analyses showed that Upc2 regulates ERG11 expression and also activates the Mrr1/Mdr1 pathway. We showed that upregulation of MDR1 by Upc2 could occur independently from Mrr1. The impact of UPC2 deletion on MDR1 expression and azole susceptibility in a hyperactive Mrr1 background was stronger than that of MRR1 deletion in a hyperactive Upc2 background. While Upc2 hyperactivation resulted in a significant increase in the expression of TAC1b, CDR1 expression remained unchanged. Taken together, our results showed that Upc2 is crucial for azole resistance in C. auris, via regulation of the ergosterol biosynthesis pathway and activation of the Mrr1/Mdr1 pathway. Notably, Upc2 is a very potent and direct activator of Mdr1.IMPORTANCECandida auris is a yeast of major medical importance causing nosocomial outbreaks of invasive candidiasis. Its ability to develop resistance to antifungal drugs, in particular to azoles (e.g., fluconazole), is concerning. Understanding the mechanisms of azole resistance in C. auris is important and may help in identifying novel antifungal targets. This study shows the key role of the transcription factor Upc2 in azole resistance of C. auris and shows that this effect is mediated via different pathways, including the regulation of ergosterol biosynthesis and also the direct upregulation of the drug transporter Mdr1.


Asunto(s)
Candidiasis Invasiva , Candidiasis , Fluconazol , Humanos , Fluconazol/farmacología , Antifúngicos/farmacología , Azoles/farmacología , Candida auris , Candida albicans , Proteínas Fúngicas/genética , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Ergosterol , Farmacorresistencia Fúngica/genética , Pruebas de Sensibilidad Microbiana
2.
Med Mycol ; 61(11)2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37930839

RESUMEN

Aspergillus fumigatus is a fungal species causing diverse diseases in humans. The use of azoles for treatments of A. fumigatus diseases has resulted in azole resistance. Azoles are also widely used in the environment for crop protection, which resulted in azole resistance. Resistance is primarily due to mutations in cyp51A, which encodes the target protein for azoles. Here we addressed the occurrence of azole resistance in soils from a vast part of Switzerland. We aimed to associate the use of azoles in the environment with the occurrence of azole resistance. We targeted sample sites from different agricultural environments as well as sites with no agricultural practice (natural sites and urban sites). Starting from 327 sites, 113 A. fumigatus isolates were recovered (2019-2021), among which 19 were azole-resistant (15 with TR34/L98H and four with TR46/Y121F/T289A resistance mutations in cyp51A). Our results show that azole resistance was not associated with a specific agricultural practice. Azoles could be chemically detected in investigated soils, however, their presence was not associated with the occurrence of azole-resistant isolates. Interestingly, genetic markers of resistance to other fungicides were detected but only in azole-resistant isolates, thus reinforcing the notion that A. fumigatus cross-resistance to fungicides has an environmental origin. In conclusion, this study reveals the spreading of azole resistance in A. fumigatus from the environment in Switzerland. The proximity of agricultural areas to urban centers may facilitate the transmission of resistant strains to at-risk populations. Thus, vigilant surveillance is required to maintain effective treatment options for aspergillosis.


Aspergillus fumigatus is ubiquitous and causes diseases in humans. Antifungal drugs, and especially azoles, are used to combat A. fumigatus. Azoles are widely used in the environment, which exposes A. fumigatus and results in azole resistance. Azole resistance was investigated in Switzerland.


Asunto(s)
Aspergillus fumigatus , Fungicidas Industriales , Humanos , Azoles/farmacología , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Suelo , Suiza , Proteínas Fúngicas/genética , Farmacorresistencia Fúngica/genética , Pruebas de Sensibilidad Microbiana/veterinaria
3.
Artículo en Inglés | MEDLINE | ID: mdl-33619054

RESUMEN

Candida auris is a novel Candida species that has spread in all continents causing nosocomial outbreaks of invasive candidiasis. C. auris has the ability to develop resistance to all antifungal drug classes. Notably, many C. auris isolates are resistant to the azole drug fluconazole, a standard therapy of invasive candidiasis.Azole resistance in C. auris can result from mutations in the azole target gene ERG11 and/or overexpression of the efflux pump Cdr1. TAC1 is a transcription factor controlling CDR1 expression in C. albicans The role of TAC1 homologs in C. auris (TAC1a and TAC1b) remains to be better defined.In this study, we compared sequences of ERG11, TAC1a and TAC1b between a fluconazole-susceptible and five fluconazole-resistant C. auris isolates of clade IV. Among four of the resistant isolates, we identified a similar genotype with concomitant mutations in ERG11 (F444L) and TAC1b (S611P). The simultaneous deletion of tandemly arranged TAC1a/TAC1b resulted in a decrease of minimal inhibitory concentration (MIC) for fluconazole. Introduction of the ERG11 and TAC1b mutations separately and/or combined in the wild-type azole susceptible isolate resulted in a significant increase of azole resistance with a cumulative effect of the two combined mutations. Interestingly, CDR1 expression was not significantly affected by TAC1a/TAC1b deletion or by the presence of the TAC1b S611P mutation, suggesting the existence of Tac1-dependent and Cdr1-independent azole resistance mechanisms.We demonstrated the role of two previously unreported mutations responsible for azole resistance in C. auris, which were a common signature among four azole-resistant isolates of clade IV.

4.
Virulence ; 13(1): 1285-1303, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35795910

RESUMEN

Candida species are the most commonly isolated opportunistic fungal pathogens in humans. Candida albicans causes most of the diagnosed infections, closely followed by Candida glabrata. C. albicans is well studied, and many genes have been shown to be important for infection and colonization of the host. It is however less clear how C. glabrata infects the host. With the help of fungal RNA enrichment, we here investigated for the first time the transcriptomic profile of C. glabrata during urinary tract infection (UTI) in mice. In the UTI model, bladders and kidneys are major target organs and therefore fungal transcriptomes were addressed in these organs. Our results showed that, next to adhesins and proteases, nitrogen metabolism and regulation play a vital role during C. glabrata UTI. Genes involved in nitrogen metabolism were upregulated and among them we show that DUR1,2 (urea amidolyase) and GAP1 (amino acid permease) were important for virulence. Furthermore, we confirmed the importance of the glyoxylate cycle in the host and identified MLS1 (malate synthase) as an important gene necessary for C. glabrata virulence. In conclusion, our study shows with the support of in vivo transcriptomics how C. glabrata adapts to host conditions.


Asunto(s)
Candida glabrata , Transcriptoma , Animales , Candida albicans , Candida glabrata/genética , Humanos , Ratones , Nitrógeno/metabolismo , ARN/metabolismo , Virulencia/genética
5.
Front Cell Infect Microbiol ; 12: 859439, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35601096

RESUMEN

Objectives: The antifungal susceptibility testing (AFST) of yeast pathogen alerts clinicians about the potential emergence of resistance. In this study, we compared two commercial microdilution AFST methods: Sensititre YeastOne read visually (YO) and MICRONAUT-AM read visually (MN) or spectrophotometrically (MNV), interpreted with Clinical and Laboratory Standards Institute and European Committee on Antimicrobial Susceptibility Testing criteria, respectively. Methods: Overall, 97 strains from 19 yeast species were measured for nine antifungal drugs including a total of 873 observations. First, the minimal inhibitory concentration (MIC) was compared between YO and MNV, and between MNV and MN, either directly or by assigning them to five susceptibility categories. Those categories were based on the number of MIC dilutions around the breakpoint or epidemiological cut-off reference values (ECOFFs or ECVs). Second, YO and MNV methods were evaluated for their ability to detect the elevation of MICs due to mutation in antifungal resistance genes, thanks to pairs or triplets of isogenic strains isolated from a single patient along a treatment previously analyzed for antifungal resistance gene mutations. Reproducibility measurement was evaluated, thanks to three quality control (QC) strains. Results: YO and MNV direct MIC comparisons obtained a global agreement of 67%. Performing susceptibility category comparisons, only 22% and 49% of the MICs could be assigned to categories using breakpoints and ECOFFs/ECVs, respectively, and 40% could not be assigned due to the lack of criteria in both consortia. The YO and MN susceptibility categories gave accuracies as low as 50%, revealing the difficulty to implement this method of comparison. In contrast, using the antifungal resistance gene sequences as a gold standard, we demonstrated that both methods (YO and MN) were equally able to detect the acquisition of resistance in the Candida strains, even if MN showed a global lower MIC elevation than YO. Finally, no major differences in reproducibility were observed between the three AFST methods. Conclusion: This study demonstrates the valuable use of both commercial microdilution AFST methods to detect antifungal resistance due to point mutations in antifungal resistance genes. We highlighted the difficulty to conduct conclusive analyses without antifungal gene sequence data as a gold standard. Indeed, MIC comparisons taking into account the consortia criteria of interpretation remain difficult even after the effort of harmonization.


Asunto(s)
Antifúngicos , Farmacorresistencia Fúngica , Antifúngicos/farmacología , Candida , Farmacorresistencia Fúngica/genética , Humanos , Pruebas de Sensibilidad Microbiana , Reproducibilidad de los Resultados , Levaduras
6.
PLoS Pathog ; 18(4): e1010012, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35404986

RESUMEN

As part of the human microbiota, the fungus Candida albicans colonizes the oral cavity and other mucosal surfaces of the human body. Commensalism is tightly controlled by complex interactions of the fungus and the host to preclude fungal elimination but also fungal overgrowth and invasion, which can result in disease. As such, defects in antifungal T cell immunity render individuals susceptible to oral thrush due to interrupted immunosurveillance of the oral mucosa. The factors that promote commensalism and ensure persistence of C. albicans in a fully immunocompetent host remain less clear. Using an experimental model of C. albicans oral colonization in mice we explored fungal determinants of commensalism in the oral cavity. Transcript profiling of the oral isolate 101 in the murine tongue tissue revealed a characteristic metabolic profile tailored to the nutrient poor conditions in the stratum corneum of the epithelium where the fungus resides. Metabolic adaptation of isolate 101 was also reflected in enhanced nutrient acquisition when grown on oral mucosa substrates. Persistent colonization of the oral mucosa by C. albicans also correlated inversely with the capacity of the fungus to induce epithelial cell damage and to elicit an inflammatory response. Here we show that these immune evasive properties of isolate 101 are explained by a strong attenuation of a number of virulence genes, including those linked to filamentation. De-repression of the hyphal program by deletion or conditional repression of NRG1 abolished the commensal behaviour of isolate 101, thereby establishing a central role of this factor in the commensal lifestyle of C. albicans in the oral niche of the host.


Asunto(s)
Candida albicans , Candidiasis Bucal , Animales , Candidiasis Bucal/microbiología , Proteínas Fúngicas , Ratones , Mucosa Bucal/microbiología , Simbiosis , Virulencia
7.
Antimicrob Agents Chemother ; 66(4): e0006722, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35343781

RESUMEN

Candida auris is an emerging yeast pathogen with a remarkable ability to develop antifungal resistance, in particular to fluconazole and other azoles. Azole resistance in C. auris was shown to result from different mechanisms, such as mutations in the target gene ERG11 or gain-of-function (GOF) mutations in the transcription factor TAC1b and overexpression of the drug transporter Cdr1. The roles of the transcription factor Mrr1 and of the drug transporter Mdr1 in azole resistance is still unclear. Previous works showed that deletion of MRR1 or MDR1 had no or little impact on azole susceptibility of C. auris. However, an amino acid substitution in Mrr1 (N647T) was identified in most C. auris isolates of clade III that were fluconazole resistant. This study aimed at investigating the role of the transcription factor Mrr1 in azole resistance of C. auris. While the MRR1N647T mutation was always concomitant to hot spot ERG11 mutations, MRR1 deletion in one of these isolates only resulted in a modest decrease of azole MICs. However, introduction of the MRR1N647T mutation in an azole-susceptible C. auris isolate from another clade with wild-type MRR1 and ERG11 alleles resulted in significant increase of fluconazole and voriconazole MICs. We demonstrated that this MRR1 mutation resulted in reduced azole susceptibility via upregulation of the drug transporter MDR1 and not CDR1. In conclusion, this work demonstrates that the Mrr1-Mdr1 axis may contribute to C. auris azole resistance by mechanisms that are independent from ERG11 mutations and from CDR1 upregulation.


Asunto(s)
Azoles , Fluconazol , Antifúngicos/farmacología , Azoles/farmacología , Candida albicans , Candida auris , Farmacorresistencia Fúngica/genética , Fluconazol/farmacología , Proteínas Fúngicas/genética , Pruebas de Sensibilidad Microbiana , Factores de Transcripción/genética
9.
Microbiol Spectr ; 9(3): e0139521, 2021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-34730380

RESUMEN

Candida auris is an emerging yeast pathogen of candidemia with the ability to develop resistance to all current antifungal drug classes. Novel antifungal therapies against C. auris are warranted. NSC319726 is a thiosemicarbazone with an inhibitory effect on fungal ribosome biogenesis that has demonstrated some antifungal activity. In this study, we assessed the in vitro activity and in vivo efficacy of NSC319726 against C. auris. NSC319726 was active in vitro against 22 C. auris isolates from different clades, with MICs ranging from 0.125 to 0.25 mg/liter. Despite complete visual growth inhibition, the effect was described as fungistatic in time-kill curves. Interactions with fluconazole, amphotericin B, and micafungin, as tested by the checkerboard dilution method, were described as indifferent. NSC319726 demonstrated significant effects in rescuing G. mellonella larvae infected with two distinct C. auris isolates, compared to the untreated group. In conclusion, NSC319726 demonstrated in vitro activity against C. auris and in vivo efficacy in an invertebrate model of infection. Its potential role as a novel antifungal therapy in humans should be further investigated. IMPORTANCE Candida auris is emerging as a major public health threat because of its ability to cause nosocomial outbreaks of severe invasive candidiasis. Management of C. auris infection is difficult because of its frequent multidrug-resistant profile for currently licensed antifungals. Here, we show that the thiosemicarbazone NSC319726 was active in vitro against a large collection of C. auris isolates from different clades. Moreover, the drug was well tolerated and effective for the treatment of C. auris infection in an invertebrate model of Galleria mellonella. We conclude that NSC319726 might represent an interesting drug candidate for the treatment of C. auris infection.


Asunto(s)
Antifúngicos/farmacología , Candida auris/efectos de los fármacos , Candidemia/tratamiento farmacológico , Candidiasis Invasiva/tratamiento farmacológico , Piridinas/farmacología , Anfotericina B/farmacología , Candida auris/crecimiento & desarrollo , Candida auris/aislamiento & purificación , Infección Hospitalaria/tratamiento farmacológico , Infección Hospitalaria/prevención & control , Interacciones Farmacológicas , Fluconazol/farmacología , Humanos , Micafungina/farmacología , Pruebas de Sensibilidad Microbiana
10.
J Fungi (Basel) ; 7(10)2021 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-34682265

RESUMEN

Urinary tract infections (UTIs) are quite common and mainly caused by bacteria such as Escherichia coli. However, when patients have urinary catheters, fungal infections comprise up to 15% of these types of infections. Moreover, fungal UTIs have a high mortality, due to rapid spreading of the fungi to the kidneys. Most fungal UTIs are caused by Candida species, among which Candida albicans and Candida glabrata are the most common. C. glabrata is an opportunistic pathogenic yeast, phylogenetically quite close to Saccharomyces cerevisiae. Even though it is commonly isolated from the urinary tract and rapidly acquires resistance to antifungals, its pathogenesis has not been studied extensively in vivo. In vivo studies require high numbers of animals, which can be overcome by the use of non-invasive imaging tools. One such tool, bioluminescence imaging, has been used successfully to study different types of C. albicans infections. For C. glabrata, only biofilms on subcutaneously implanted catheters have been imaged using this tool. In this work, we investigated the progression of C. glabrata UTIs from the bladder to the kidneys and the spleen. Furthermore, we optimized expression of a red-shifted firefly luciferase in C. glabrata for in vivo use. We propose the first animal model using bioluminescence imaging to visualize C. glabrata in mouse tissues. Additionally, this UTI model can be used to monitor antifungal activity in vivo over time.

11.
J Fungi (Basel) ; 7(9)2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34575798

RESUMEN

Candida lusitaniae is an opportunistic pathogen in humans that causes infrequent but difficult-to-treat diseases. Antifungal drugs are used in the clinic to treat C. lusitaniae infections, however, this fungus can rapidly acquire antifungal resistance to all known antifungal drugs (multidrug resistance). C. lusitaniae acquires azole resistance by gain-of-function (GOF) mutations in the transcriptional regulator MRR1. MRR1 controls the expression of a major facilitator transporter (MFS7) that is important for fluconazole resistance. Here, we addressed the role of the ATP Binding Cassette (ABC) transporter CDR1 as additional mediator of azole resistance in C. lusitaniae. CDR1 expression in isolates with GOF MRR1 mutations was higher compared to wild types, which suggests that CDR1 is an additional (direct or indirect) target of MRR1. CDR1 deletion in the azole-resistant isolate P3 (V688G GOF) revealed that MICs of long-tailed azoles, itraconazole and posaconazole, were decreased compared to P3, which is consistent with the role of this ABC transporter in the efflux of these azoles. Fluconazole MIC was only decreased when CDR1 was deleted in the background of an mfs7Δ mutant from P3, which underpins the dominant role of MFS7 in the resistance of the short-tailed azole fluconazole. With R6G efflux readout as Cdr1 efflux capacity, our data showed that R6G efflux was increased in P3 compared to an azole-susceptible wild type parent, and diminished to background levels in mutant strains lacking CDR1. Milbemycin oxim A3, a known inhibitor of fungal ABC transporters, mimicked efflux phenotypes of cdr1Δ mutants. We therefore provided evidence that CDR1 is an additional mediator of azole resistance in C. lusitaniae, and that CDR1 regulation is dependent on MRR1 and associated GOF mutations.

12.
J Fungi (Basel) ; 7(4)2021 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-33924126

RESUMEN

In Candida albicans, calcium ions (Ca2+) regulate the activity of several signaling pathways, especially the calcineurin signaling pathway. Ca2+ homeostasis is also important for cell polarization, hyphal extension, and plays a role in contact sensing. It is therefore important to obtain accurate tools with which Ca2+ homeostasis can be addressed in this fungal pathogen. Aequorin from Aequorea victoria has been used in eukaryotic cells for detecting intracellular Ca2+. A codon-adapted aequorin Ca2+-sensing expression system was therefore designed for probing cytosolic Ca2+ flux in C. albicans. The availability of a novel water-soluble formulation of coelenterazine, which is required as a co-factor, made it possible to measure bioluminescence as a readout of intracellular Ca2+ levels in C. albicans. Alkaline stress resulted in an immediate influx of Ca2+ from the extracellular medium. This increase was exacerbated in a mutant lacking the vacuolar Ca2+ transporter VCX1, thus confirming its role in Ca2+ homeostasis. Using mutants in components of a principal Ca2+ channel (MID1, CCH1), the alkaline-dependent Ca2+ spike was greatly reduced, thus highlighting the crucial role of this channel complex in Ca2+ uptake and homeostasis. Exposure to the antiarrhythmic drug amiodarone, known to perturb Ca2+ trafficking, resulted in increased cytoplasmic Ca2+ within seconds that was abrogated by the chelation of Ca2+ in the external medium. Ca2+ import was also dependent on the Cch1/Mid1 Ca2+ channel in amiodarone-exposed cells. In conclusion, the aequorin Ca2+ sensing reporter developed here is an adequate tool with which Ca2+ homeostasis can be investigated in C. albicans.

13.
Med Mycol ; 59(8): 763-772, 2021 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-33550403

RESUMEN

Aspergillus fumigatus is the main cause of invasive aspergillosis, for which azole drugs are the first-line therapy. Emergence of pan-azole resistance among A. fumigatus is concerning and has been mainly attributed to mutations in the target gene (cyp51A). However, azole resistance may also result from other mutations (hmg1, hapE) or other adaptive mechanisms. We performed microevolution experiment exposing an A. fumigatus azole-susceptible strain (Ku80) to sub-minimal inhibitory concentration of voriconazole to analyze emergence of azole resistance. We obtained a strain with pan-azole resistance (Ku80R), which was partially reversible after drug relief, and without mutations in cyp51A, hmg1, and hapE. Transcriptomic analyses revealed overexpression of the transcription factor asg1, several ATP-binding cassette (ABC) and major facilitator superfamily transporters and genes of the ergosterol biosynthesis pathway in Ku80R. Sterol analysis showed a significant decrease of the ergosterol mass under voriconazole exposure in Ku80, but not in Ku80R. However, the proportion of the sterol compounds was similar between both strains. To further assess the role of transporters, we used the ABC transporter inhibitor milbemycine oxime (MLB). MLB inhibited transporter activity in both Ku80 and Ku80R and demonstrated some potentiating effect on azole activity. Criteria for synergism were reached for MLB and posaconazole against Ku80. Finally, deletion of asg1 revealed some role of this transcription factor in controlling drug transporter expression, but had no impact on azole susceptibility.This work provides further insight in mechanisms of azole stress adaptation and suggests that drug transporters inhibition may represent a novel therapeutic target. LAY SUMMARY: A pan-azole-resistant strain was generated in vitro, in which drug transporter overexpression was a major trait. Analyses suggested a role of the transporter inhibitor milbemycin oxime in inhibiting drug transporters and potentiating azole activity.


Asunto(s)
Antifúngicos/farmacología , Aspergillus fumigatus/genética , Azoles/farmacología , Transportadoras de Casetes de Unión a ATP/metabolismo , Aspergillus fumigatus/efectos de los fármacos , Factor de Unión a CCAAT/genética , Membrana Celular/química , Membrana Celular/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Farmacorresistencia Fúngica , Proteínas Fúngicas/genética , Cromatografía de Gases y Espectrometría de Masas , Proteína HMGB1/genética , Autoantígeno Ku/antagonistas & inhibidores , Autoantígeno Ku/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Esteroles/análisis , Transcriptoma , Voriconazol/farmacología
14.
Int J Mol Sci ; 22(2)2021 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-33418931

RESUMEN

Candidaalbicans represents one of the most common fungal pathogens. Due to its increasing incidence and the poor efficacy of available antifungals, finding novel antifungal molecules is of great importance. Camphor and eucalyptol are bioactive terpenoid plant constituents and their antifungal properties have been explored previously. In this study, we examined their ability to inhibit the growth of different Candida species in suspension and biofilm, to block hyphal transition along with their impact on genes encoding for efflux pumps (CDR1 and CDR2), ergosterol biosynthesis (ERG11), and cytotoxicity to primary liver cells. Camphor showed excellent antifungal activity with a minimal inhibitory concentration of 0.125-0.35 mg/mL while eucalyptol was active in the range of 2-23 mg/mL. The results showed camphor's potential to reduce fungal virulence traits, that is, biofilm establishment and hyphae formation. On the other hand, camphor and eucalyptol treatments upregulated CDR1;CDR2 was positively regulated after eucalyptol application while camphor downregulated it. Neither had an impact on ERG11 expression. The beneficial antifungal activities of camphor were achieved with an amount that was non-toxic to porcine liver cells, making it a promising antifungal compound for future development. The antifungal concentration of eucalyptol caused cytotoxic effects and increased expression of efflux pump genes, which suggests that it is an unsuitable antifungal candidate.


Asunto(s)
Antifúngicos/farmacología , Alcanfor/farmacología , Candida albicans/patogenicidad , Eucaliptol/farmacología , Virulencia/efectos de los fármacos , Animales , Biopelículas/efectos de los fármacos , Candida albicans/efectos de los fármacos , Candida albicans/fisiología , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Proteínas Fúngicas/metabolismo , Hígado/citología , Hígado/efectos de los fármacos , Hígado/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Pruebas de Sensibilidad Microbiana , Especies Reactivas de Oxígeno/metabolismo , Porcinos
15.
Front Fungal Biol ; 2: 658899, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-37744106

RESUMEN

Candida albicans is a commensal of human mucosae, but also one of the most common fungal pathogens of humans. Systemic infections caused by this fungus, mostly affecting immunocompromised patients, are associated to fatality rates as high as 50% despite the available treatments. In order to improve this situation, it is necessary to fully understand how C. albicans is able to cause disease and how it copes with the host defenses. Our previous studies have revealed the importance of the C. albicans gene MBF1 in virulence and ability to colonize internal organs of mammalian and insect hosts. MBF1 encodes a putative transcriptional regulator, and as such it likely has an impact in the regulation of C. albicans gene expression during host infection. Here, recent advances in RNA-seq technologies were used to obtain a detailed analysis of the impact of MBF1 on C. albicans gene expression both in vitro and during infection. MBF1 was involved in the regulation of several genes with a role in glycolysis and response to stress, particularly to nutritional stress. We also investigated whether an interaction existed between MBF1 and GCN4, a master regulator of response to starvation, and found that both genes were needed for resistance to amino acid starvation, suggesting some level of interaction between the two. Reinforcing this idea, we showed that the proteins encoded by both genes could interact. Consistent with the role of MBF1 in virulence, we also established that GCN4 was necessary for virulence in the mouse model of systemic infection as well as in the Galleria mellonella infection model.

16.
Front Fungal Biol ; 2: 633876, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-37744130

RESUMEN

Transposable elements are present in almost all known genomes, these endogenous transposons have recently been referred to as the mobilome. They are now increasingly used in research in order to make extensive mutant libraries in different organisms. Fungi are an essential part of our lives on earth, they influence the availability of our food and they live inside our own bodies both as commensals and pathogenic organisms. Only few fungal species have been studied extensively, mainly due to the lack of appropriate molecular genetic tools. The use of transposon insertion libraries can however help to rapidly advance our knowledge of (conditional) essential genes, compensatory mutations and drug target identification in fungi. Here we give an overview of some recent developments in the use of different transposons for saturation mutagenesis in different fungi.

17.
EXCLI J ; 19: 1436-1445, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33312106

RESUMEN

Due to limited arsenal of systemically available antifungal agents, infections caused by Candida albicans are difficult to treat and the emergence of drug-resistant strains present a major challenge to the clinicians worldwide. Hence further exploration of potential novel and effective antifungal drugs is required. In this study we have explored the potential of a flavonoid, astragalin, in controlling the growth of C. albicans, in both planktonic and biofilm forms by microdilution method; and in regulating the morphological switch between yeast and hyphal growth. Astragalin ability to interfere with membrane integrity, ergosterol synthesis and its role in the regulation of genes encoding for efflux pumps has been addressed. In our study, astragalin treatment produced good antimicrobial and significant antibiofilm activity. Anticandidal activity of astragalin was not related to ERG11 downregulation, neither to direct binding to CYP51 enzyme nor was linked to membrane ergosterol assembly. Instead, astragalin treatment resulted in reduced expression of CDR1 and also affected cell membrane integrity without causing cytotoxic effect on human gingival fibroblast cells. Considering that astragalin-mediated decreased expression of efflux pumps increases the concentration of antifungal drug inside the fungal cells, a combinatorial treatment with this agent could be explored as a novel therapeutic option for candidiasis.

18.
Front Microbiol ; 11: 591140, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33262748

RESUMEN

Candida albicans is an important human pathogen and a major concern in intensive care units around the world. C. albicans infections are associated with a high mortality despite the use of antifungal treatments. One of the causes of therapeutic failures is the acquisition of antifungal resistance by mutations in the C. albicans genome. Fluconazole (FLC) is one of the most widely used antifungal and mechanisms of FLC resistance occurring by mutations have been extensively investigated. However, some clinical isolates are known to be able to survive at high FLC concentrations without acquiring resistance mutations, a phenotype known as tolerance. Mechanisms behind FLC tolerance are not well studied, mainly due to the lack of a proper way to identify and quantify tolerance in clinical isolates. We proposed here culture conditions to investigate FLC tolerance as well as an easy and efficient method to identity and quantify tolerance to FLC. The screening of C. albicans strain collections revealed that FLC tolerance is pH- and strain-dependent, suggesting the involvement of multiple mechanisms. Here, we addressed the identification of FLC tolerance mediators in C. albicans by an overexpression strategy focusing on 572 C. albicans genes. This strategy led to the identification of two transcription factors, CRZ1 and GZF3. CRZ1 is a C2H2-type transcription factor that is part of the calcineurin-dependent pathway in C. albicans, while GZF3 is a GATA-type transcription factor of unknown function in C. albicans. Overexpression of each gene resulted in an increase of FLC tolerance, however, only the deletion of CRZ1 in clinical FLC-tolerant strains consistently decreased their FLC tolerance. Transcription profiling of clinical isolates with variable levels of FLC tolerance confirmed a calcineurin-dependent signature in these isolates when exposed to FLC.

20.
mBio ; 11(4)2020 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-32817108

RESUMEN

Aspergillus fumigatus is responsible for a wide range of diseases affecting several million people worldwide. Currently, a few families of antifungals are available to fight aspergillosis, and we are facing a worrisome increase in resistance to azoles, the drugs used for both first-line treatment and prophylaxis of invasive aspergillosis. In this context, some of the latest antifungals, i.e., echinocandins, have gained attention. Even though acquired resistance to echinocandins is yet uncommon in A. fumigatus clinical isolates, some strains exhibit another characteristic that relies on their capacity to grow at suprainhibitory echinocandin concentrations in vitro This intriguing phenomenon, especially observed with caspofungin and now referred to as the caspofungin paradoxical effect (CPE), relies on molecular mechanisms that were hitherto little understood. Here, we discuss the recent key findings of Valero and colleagues published in mBio (C. Valero, A. C. Colabardini, J. Chiaratto, L. Pardeshi, et al., mBio 11:e00816-20, 2020, https://doi.org/10.1128/mBio.00816-20) that will allow a better understanding of the complex regulatory pathway involved in governing the response of A. fumigatus to caspofungin.


Asunto(s)
Aspergillus fumigatus , Caspofungina , Antifúngicos , Equinocandinas , Proteínas Fúngicas , Factores de Transcripción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...