Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Animals (Basel) ; 13(4)2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36830377

RESUMEN

Hedgehogs occur within an urban mammal guild in the United Kingdom. This guild commonly utilizes anthropogenic food provision, which is potentially beneficial to wild animal populations, but may also bring competitors and predators into proximity, raising the question of how these species interact in urban gardens. In this study, we determined interactions between hedgehogs, foxes, badgers, and domestic cats using videos submitted via citizen science. We analyzed interactions within and between species to determine interaction type, hierarchical relationships, and effect of supplementary food presence/amount. We found that overall agonistic interactions between individuals occurred more frequently (55.4%) than neutral interactions (44.6%) and that interspecific interactions showed greater agonism (55.4%) than intraspecific ones (36%). Within intraspecific interactions, those between hedgehogs were the most agonistic (54.9%) and between badgers the least (6.7%). Species composition of the interaction affected agonism, with interactions between cats and foxes showing the highest level (76.7%). In terms of overall "wins", where access to garden resources was gained, badgers dominated cats, which were dominant or equal to foxes, which dominated hedgehogs. However, hedgehogs exhibited a greater overall proportion of wins (39.3%) relative to cats. Our findings are important in the context of the documented impact of patchy resources on urban wildlife behavior, and we show that provision of anthropogenic food can potentially result in unintended consequences. We recommend actions to reduce proximity of guild competitors in space and time to limit negative effects.

2.
Front Microbiol ; 8: 127, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28228750

RESUMEN

Despite the importance of diversification rates in the study of prokaryote evolution, they have not been quantitatively assessed for the majority of microorganism taxa. The investigation of evolutionary patterns in prokaryotes constitutes a challenge due to a very scarce fossil record, limited morphological differentiation and frequently complex taxonomic relationships, which make even species recognition difficult. Although the speciation models and speciation rates in eukaryotes have traditionally been established by analyzing the fossil record data, this is frequently incomplete, and not always available. More recently, several methods based on molecular sequence data have been developed to estimate speciation and extinction rates from phylogenies reconstructed from contemporary taxa. In this work, we determined the divergence time and temporal diversification of the genus Aeromonas by applying these methods widely used with eukaryotic taxa. Our analysis involved 150 Aeromonas strains using the concatenated sequences of two housekeeping genes (approximately 2,000 bp). Dating and diversification model analyses were performed using two different approaches: obtaining the consensus sequence from the concatenated sequences corresponding to all the strains belonging to the same species, or generating the species tree from multiple alignments of each gene. We used BEAST to perform a Bayesian analysis to estimate both the phylogeny and the divergence times. A global molecular clock cannot be assumed for any gene. From the chronograms obtained, we carried out a diversification analysis using several approaches. The results suggest that the genus Aeromonas began to diverge approximately 250 millions of years (Ma) ago. All methods used to determine Aeromonas diversification gave similar results, suggesting that the speciation process in this bacterial genus followed a rate-constant (Yule) diversification model, although there is a small probability that a slight deceleration occurred in recent times. We also determined the constant of diversification (λ) values, which in all cases were very similar, about 0.01 species/Ma, a value clearly lower than those described for different eukaryotes.

3.
Syst Appl Microbiol ; 39(2): 106-14, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26934994

RESUMEN

Two hundred and twenty-one strains representative of all Aeromonas species were characterized using the recA gene sequence, assessing its potential as a molecular marker for the genus Aeromonas. The inter-species distance values obtained demonstrated that recA has a high discriminatory power. Phylogenetic analysis, based on full-length gene nucleotide sequences, revealed a robust topology with clearly separated clusters for each species. The maximum likelihood tree showed the Aeromonas bestiarum strains in a well-defined cluster, containing a subset of four strains of different geographical origins in a deep internal branch. Data analysis provided strong evidence of recombination at the end of the recA sequences in these four strains. Intergenomic recombination corresponding to partial regions of the two adjacent genes recA and recX (248 bp) was identified between A. bestiarum (major parent) and Aeromonas eucrenophila (minor parent). The low number of recombinant strains detected (1.8%) suggests that horizontal flow between recA sequences is relatively uncommon in this genus. Moreover, only a few nucleotide differences were detected among these fragments, indicating that recombination has occurred recently. Finally, we also determined if the recombinant fragment could have influenced the structure and basic functions of the RecA protein, comparing models reconstructed from the translated amino acid sequences of our A. bestiarum strains with known Escherichia coli RecA structures.


Asunto(s)
Aeromonas/genética , Rec A Recombinasas/genética , Recombinación Genética , Genes Bacterianos , Modelos Moleculares , Filogenia , Conformación Proteica , Rec A Recombinasas/química , Análisis de Secuencia de ADN
4.
Can J Microbiol ; 62(4): 296-306, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26889703

RESUMEN

Aeromonas are autochthonous inhabitants of aquatic environments, including chlorinated and polluted waters, although they can also be isolated from a wide variety of environmental and clinical sources. They cause infections in vertebrates and invertebrates and are considered to be an emerging pathogen in humans, producing intestinal and extra-intestinal diseases. Most of the clinical isolates correspond to A. hydrophila, A. caviae, and A. veronii bv. Sobria, which are described as the causative agents of wound infections, septicaemia, and meningitis in immunocompromised people, and diarrhoea and dysenteric infections in the elderly and children. The pathogenic factors associated with Aeromonas are multifactorial and involve structural components, siderophores, quorum-sensing mechanisms, secretion systems, extracellular enzymes, and exotoxins. In this study, we analysed a representative number of clinical and environmental strains belonging to the A. hydrophila species complex to evaluate their potential pathogenicity. We thereby detected their enzymatic activities and antibiotic susceptibility pattern and the presence of virulence genes (aer, alt, ast, and ascV). The notably high prevalence of these virulence factors, even in environmental strains, indicated a potential pathogenic capacity. Additionally, we determined the adhesion capacity and cytopathic effects of this group of strains in Caco-2 cells. Most of the strains exhibited adherence and caused complete lysis.


Asunto(s)
Aeromonas hydrophila/patogenicidad , Aeromonas hydrophila/genética , Aeromonas hydrophila/aislamiento & purificación , Animales , Antibacterianos/farmacología , Adhesión Bacteriana , Células CACO-2 , Pruebas Antimicrobianas de Difusión por Disco , Farmacorresistencia Bacteriana , Microbiología de Alimentos , Infecciones por Bacterias Gramnegativas/microbiología , Hemólisis , Humanos , Moluscos/microbiología , Ovinos , Virulencia/genética , Factores de Virulencia/genética , Microbiología del Agua
5.
Genome Announc ; 1(3)2013 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-23792745

RESUMEN

We present here the first genome sequence of the Aeromonas diversa type strain (CECT 4254(T)). This strain was isolated from the leg wound of a patient in New Orleans (Louisiana) and was originally described as enteric group 501 and distinguished from A. schubertii by DNA-DNA hybridization and phenotypical characterization.

6.
Syst Appl Microbiol ; 36(5): 306-8, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23759598

RESUMEN

Technological advances together with the continuous description of new taxa have led to frequent reclassifications in bacterial taxonomy. In this study, an extensive bibliographic revision, as well as a sequence analysis of nine housekeeping genes (cpn60, dnaJ, dnaX, gyrA, gyrB, mdh, recA, rpoB and rpoD) and a phenotypic identification of Aeromonas hydrophila subspecies anaerogenes were performed. All data obtained from previous physiological, phylogenetic, and DNA-DNA hybridization studies together with those presented in this study suggested that A. hydrophila subspecies anaerogenes belonged to the species Aeromonas caviae rather than A. hydrophila. Therefore, the inclusion of A. hydrophila subsp. anaerogenes in the species A. caviae is proposed.


Asunto(s)
Aeromonas caviae/clasificación , Aeromonas hydrophila/clasificación , Aeromonas caviae/genética , Aeromonas caviae/metabolismo , Aeromonas hydrophila/genética , Aeromonas hydrophila/metabolismo , Técnicas de Tipificación Bacteriana , ADN Bacteriano/genética , Hibridación de Ácido Nucleico
7.
Genome Announc ; 1(3)2013 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-23788549

RESUMEN

We report here the draft genome sequence of Aeromonas molluscorum 848T, the type strain of this Aeromonas species, which was isolated from wedge shells (Donax trunculus) obtained from a retail market in Barcelona, Spain, in 1997.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...