Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanoscale ; 15(13): 6075-6104, 2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-36928281

RESUMEN

Significant advances in nanoparticle-related research have been made in the past decade, and amelioration of properties is considered of utmost importance for improving nanoparticle bioavailability, specificity, and catalytic performance. Nanoparticle properties can be tuned through in-synthesis and post-synthesis functionalization operations, with thermodynamic and kinetic parameters playing a crucial role. In spite of robust functionalization techniques based on surface chemistry, scalable technologies have not been explored well. The coordination enhancement via surface functionalization through organic/inorganic/biomolecules material has attracted much attention with morphology modification and shape tuning, which are indispensable aspects in the colloidal phase during biomedical applications. It is envisioned that surface amelioration influences the anchoring properties of nano interfaces for the immobilization of functional groups and biomolecules. In this work, various nanostructure and anchoring methodologies have been discussed, aiming to exploit their full potential in precision engineering applications. Simultaneous discussions on emerging characterization strategies for functionalized assemblies have been made to gain insights into functionalization chemistry. An overview of current advances and prospects of functionalized nanoparticles has been presented, with an emphasis on controllable attributes such as size, shape, morphology, functionality, surface features, Debye and Casimir interactions.

2.
Environ Sci Pollut Res Int ; 29(50): 76003-76025, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35665890

RESUMEN

Recently, carbon capture, utilization, and storage (CCUS) with enhanced oil recovery (EOR) have gained a significant traction in an attempt to reduce greenhouse gas emissions. Information on pore-scale CO2 fluid behavior is vital for efficient geo-sequestration and EOR. This study scrutinizes the behavior of supercritical CO2 (sc-CO2) under different reservoir temperature and pressure conditions through computational fluid dynamics (CFD) analysis, applying it to light and heavy crude oil reservoirs. The effects of reservoir pressure (20 MPa and 40 MPa), reservoir temperature (323 K and 353 K), injection velocities (0.005 m/s, 0.001 m/s, and 0.0005 m/s), and in situ oil properties (835.3 kg/m3 and 984 kg/m3) have been considered as control variables. This study couples the Helmholtz free energy equation (equation of state) to consider the changes in physical properties of sc-CO2 owing to variations in reservoir pressure and temperature conditions. It has been found that the sc-CO2 sequestration is more efficient in the case of light oil than heavy oil reservoirs. Notably, an increase in temperature and pressure does not affect the trend of sc-CO2 breakthrough or oil recovery in the case of a reservoir bearing light oil. For heavy oil reservoirs with high pressures, sc-CO2 sequestration or oil recovery was higher due to the significant increase in density and viscosity of sc-CO2. Quantitative analysis showed that the stabilizing factor (ε) appreciably varies for light oil at low velocities while higher sensitivity was displayed for heavy oil at high velocities.


Asunto(s)
Dióxido de Carbono , Gases de Efecto Invernadero , Carbono , Dióxido de Carbono/análisis , Secuestro de Carbono , Yacimiento de Petróleo y Gas
3.
J Colloid Interface Sci ; 586: 315-325, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33148450

RESUMEN

HYPOTHESIS: The advanced low salinity aqueous formulations are yet to be validated as an injection fluid for enhanced oil recovery (EOR) from the carbonate reservoirs and CO2 geosequestration. Interaction of various ionic species present in the novel low salinity surfactant nanofluids with scCO2/CO2 saturated aqueous phase interface and at the interface of CO2 saturated aqueous phase/mixed wet (with CO2 and Decane) limestone surface at the conditions of low salinity at reservoir conditions are to yet to be understood. EXPERIMENTS: This study, carried out for the first time in low salinity at scCO2 loading conditions at 20 MPa pressure and 343 K temperature, comprises of wettability study of the limestone surface by aqueous phase contact angle measurements using ZrO2 nanoparticles (in the concentration range of 100-2000 mg/L) and 0.82 mM Hexadecyltrimethylammonium bromide (CTAB) surfactant. Molecular dynamics simulations results were used to understand the underlying mechanism of wettability alteration and interfacial tension (IFT) change. FINDINGS: This study reveals that a low dosage (100 mg/L) of ZrO2 nanoparticles forming ZrO2-CTAB nano-complexes helps in wettability alteration of the rock surface to more water-wetting state; certain ionic species augment this effect when used in appropriate concentration. Also, these nano-complexes helps in scCO2/CO2 saturated aqueous phase IFT reduction. This study can be used to design advanced low salinity injection fluids for water alternating gas injection for EOR and CO2 geosequestration projects.

4.
ACS Omega ; 5(3): 1506-1518, 2020 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-32010824

RESUMEN

Low salinity waterflooding (low salinity-EOR) has attracted great interest from many giant oil producers and is currently under trial in some of the oil fields of the United States, Middle Eastern countries, and North Sea reservoirs. Most of the reported studies on this process were carried out for medium to relatively heavy oil with significant polar contents. In this work, we have investigated low salinity waterflooding performance for light paraffinic crude oil with a low acid number. This study has been performed using crude oil from an Indian offshore oilfield and Indian offshore seawater. Oil recovery efficiencies of seawater and its diluted versions (low salinity seawater) were evaluated through core-flooding experiments performed on a silica sand pack containing small amounts (2 wt %) of bentonite clay saturated with crude oil. Interfacial tension and wettability studies were performed to understand the associated low salinity effects on the crude oil/brine/rock properties. Effluent brine produced during the flooding experiments was also analyzed to obtain a clearer insight into the low salinity-enhanced oil recovery (EOR) mechanism. The results showed that injection of low salinity seawater can significantly increase the waterflood recovery in comparison with high salinity seawater injection. Interfacial tension and contact angle studies revealed that there is an optimum dilution level at which the interfacial tension and wettability are the most favorable for enhanced oil recovery even in the case of light paraffinic crude. These results are in line with the results obtained from the core-flooding experiments. The possible reason behind recovery improvement based on the interfacial tension and wettability studies in conjugation with the effluent brine analysis has been discussed in detail. In this study, we have observed that the enhanced oil recovery efficiency could be achieved by applying low salinity seawater flooding even in the case of light paraffinic oil with a low acid number.

5.
J Colloid Interface Sci ; 562: 370-380, 2020 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-31864014

RESUMEN

HYPOTHESIS: Low salinity surfactant nanofluids have recently shown promising characteristics in wettability alteration of the silicate-based rock representative substrate and interfacial tension reduction of oil/aqueous phase interface. Pore level understanding of the physical processes entailed in this new class of low salinity injection fluids in oil-phase saturated real rock porous media is required, which has not been conceived yet. EXPERIMENTS: Thus, we investigate the oil recovery performance and possible mechanisms of oil recovery by the injection of low salinity surfactant (SDBS, 1.435 mM) aqueous solutions (with 0%, 0.01% and 0.1% (by weight) ZrO2 nanoparticles) into the oil phase saturated Doddington sandstone miniature core plugs. The designed experiment involves core flooding with X-ray transparent core-holder developed in-house and analysis/processing of the acquired image data. FINDINGS: The injection of low salinity surfactant nanofluids with 0.01% ZrO2 nanoparticles leads to maximum oil phase recovery. The results suggest that the dominating mechanisms for oil recovery are wettability alteration, inherent interfacial tension reduction, and the effect of significant amount of microemulsions formation is rather trivial. Low salinity effect, even in combination with surfactant, caused fines migrations (not reported earlier), is found to be significantly mitigated using nanoparticles. This new class of fluids may significantly enhance oil recovery.

6.
Rev Sci Instrum ; 88(2): 025102, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28249494

RESUMEN

Conventional rheometers with concentric cylinder geometries do not enhance mixing in situ and thus are not suitable for rheological studies of multiphase systems under high pressure such as gas hydrates. In this study, we demonstrate the use of modified Couette concentric cylinder geometries for high pressure rheological studies during the formation and dissociation of methane hydrate formed from pure water and water-decane systems. Conventional concentric cylinder Couette geometry did not produce any hydrates in situ and thus failed to measure rheological properties during hydrate formation. The modified Couette geometries proposed in this work observed to provide enhanced mixing in situ, thus forming gas hydrate from the gas-water-decane system. This study also nullifies the use of separate external high pressure cell for such measurements. The modified geometry was observed to measure gas hydrate viscosity from an initial condition of 0.001 Pa s to about 25 Pa s. The proposed geometries also possess the capability to measure dynamic viscoelastic properties of hydrate slurries at the end of experiments. The modified geometries could also capture and mimic the viscosity profile during the hydrate dissociation as reported in the literature. The present study acts as a precursor for enhancing our understanding on the rheology of gas hydrate formed from various systems containing promoters and inhibitors in the context of flow assurance.

7.
Environ Sci Process Impacts ; 18(3): 386-97, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26875795

RESUMEN

The use of microorganisms has been researched extensively for possible applications related to hydrocarbon degradation in the petroleum industry. However, attempts to improve the effect of microorganisms on the viscosity of hydrocarbons, which find potential use in the development of robust models for biodegradation, have been rarely documented. This study investigates the degradation of long chain hydrocarbons, such as hexadecane and eicosane using Pseudomonas fluorescens PMMD3 (P. fluorescens) and Pseudomonas aeruginosa CPCL (P. aeruginosa). P. aeruginosa used here is isolated from petroleum contaminated sediments and the P. fluorescens is from the coastal area, and both have hydrocarbon degrading genes. The degradation of hydrocarbons is studied using carbon profiling and reduction in viscosity pre- and post-degradation of hydrocarbons. The carbon profiling has been obtained using gas chromatography-mass spectroscopy (GC-MS), and Fourier transform infrared spectrometer (FTIR) results. GC-MS results have indicated an improved biodegradation of hydrocarbons by 77-93% in one day. The yield coefficients of biomass (YX/S) for P. aeruginosa and P. fluorescens using hexadecane as a carbon source are 1.35 and 0.81 g g(-1), and the corresponding values with eicosane are 0.84 and 0.88 g g(-1). The viscosity of hexadecane is reduced by the order of 53 and 47%, while that of eicosane was reduced by 53 and 65%, using P. aeruginosa and P. fluorescens, respectively. This study also presents information on the activity of enzymes responsible for the hydrocarbon degradation. Pseudomonas species have shown their use in potential applications for bioremediation, oil-spill treatment, and flow assurance. We believe that this study will also provide stringent tests for possible model development for the bioremediation of long chain paraffins suitable for oilfield applications.


Asunto(s)
Contaminantes Ambientales/metabolismo , Hidrocarburos/metabolismo , Pseudomonas aeruginosa/metabolismo , Pseudomonas fluorescens/metabolismo , Biodegradación Ambiental , Cromatografía de Gases y Espectrometría de Masas , Petróleo , Viscosidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA