Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Appl Genet ; 63(1): 87-101, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34718944

RESUMEN

A total of 96 different genotypes of upland cotton (Gossypium hirsutum) were selected from the breeding material and germplasm available at CCS HAU, India, to find the novel marker-trait associations for morphological traits used for registration of variety in upland cotton. Twenty-three morphological traits of the selected genotypes were recorded in field trials conducted in two replication of randomized block design during Kharif 2018 and 2019. A total of 11 traits showed sufficient variations in the screened germplasm and the same were further used for association mapping. A total of 168 SSRs were used for genotyping, of which 97 SSRs showed polymorphism amplifying 293 different alleles with an average of 3.02 alleles per SSR. Clustering, principal component analysis, and population structure analysis advocated that the current germplasm panel has enough diversity to be considered for association mapping. A total of 20 significant marker-trait associations were identified by the mixed linear model (MLM) and compressed mixed linear model (CMLM), of which 15 were common to both models, hence considered as promising associations. To the best of our knowledge, it is a first attempt to identify the linked markers in relation to morphological traits for the cotton crop. Results of the present study will be highly useful in speeding up variety registration programmes of upland cotton complementing to Distinctiveness, Uniformity, and Stability (DUS) testing.


Asunto(s)
Fibra de Algodón , Gossypium , Mapeo Cromosómico , Gossypium/genética , Fenotipo , Polimorfismo Genético
2.
Front Plant Sci ; 12: 653270, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34122477

RESUMEN

Improving the yield of lint is the main objective for most of the cotton crop improvement programs throughout the world as it meets the demand of fiber for textile industries. In the current study, 96 genotypes of Gossypium hirsutum were used to find novel simple sequence repeat marker-based associations for lint yield contributing traits by linkage disequilibrium. Extensive phenotyping of 96 genotypes for various agronomic traits was done for two consecutive years (2018 and 2019) in early, normal, and late sown environments. Out of 168 SSR markers screened over the 96 genotypes, a total of 97 polymorphic markers containing 293 alleles were used for analysis. Three different models, i.e., mixed linear model (MLM), compressed mixed linear model (CMLM), and multiple locus mixed linear model (MLMM), were used to detect the significant marker-trait associations for six different environments separately. A total of 38 significant marker-trait associations that were common to at least two environments were considered as promising associations and detailed annotation of the significant markers has been carried out. Twenty-two marker-trait associations were found to be novel in the current study. These results will be very useful for crop improvement programs using marker-assisted cotton breeding.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA