Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 13(19)2023 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-37836324

RESUMEN

TiB2 is a promising material for several fields including impact-resistant armor, wear-resistant coatings, cutting tools and crucibles given its physical, mechanical and chemical properties, especially due to the combination of high hardness and exceptional wear resistance. It is however very difficult to sinter below 2000 °C, even under mechanical pressure; moreover, the low fracture toughness limits the applicability of the ceramic material. By using sintering additives, it is possible to improve the sintering process and increase the mechanical properties since the additives react with oxidized layers and form secondary phases. In this study, different preparation methods and various combinations of additives (B4C, Si3N4 and MoSi2) via hot pressing sintering have been explored. Through the synergy between optimized process and tailored composition, an almost fully dense material was obtained at 1700 °C with hardness of 24.4 ± 0.2 GPa and fracture toughness of 5.4 ± 0.2 MPa m1/2. However, the highest hardness (24.5 ± 0.2 GPa) and density values were obtained for only the high-energy-milled sample with WC-Co media, featuring a core-shell grain structure. Finally, optical properties for selected samples were measured, identifying the high-energy-milled TiB2 as the sample with the highest spectral selectivity α/ε and solar absorptance.

2.
Nanomaterials (Basel) ; 13(10)2023 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-37242107

RESUMEN

Tantalum boride is an ultra-refractory and ultra-hard ceramic known so far for its favorable high-temperature thermo-mechanical properties and also characterized by a low spectral emittance, making it interesting for novel high-temperature solar absorbers for Concentrating Solar Power. In this work, we investigated two types of TaB2 sintered products with different porosities, and on each of them, we realized four femtosecond laser treatments differing in the accumulated laser fluence. The treated surfaces were then characterized by SEM-EDS, roughness analysis, and optical spectrometry. We show that, depending on laser processing parameters, the multi-scale surface textures produced by femtosecond laser machining can greatly increase the solar absorptance, while the spectral emittance increase is significantly lower. These combined effects result in increased photothermal efficiency of the absorber, with interesting perspectives for the application of these ceramics in Concentrating Solar Power and Concentrating Solar Thermal. To the best of our knowledge, this is the first demonstration of successful photothermal efficiency enhancement of ultra-hard ceramics using laser machining.

3.
Materials (Basel) ; 15(23)2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36499821

RESUMEN

Surfaces of commercial molybdenum (Mo) plates have been textured by fs-laser treatments with the aim to form low-cost and efficient solar absorbers and substrates for thermionic cathodes in Concentrated Solar Power conversion devices. Morphological (SEM and AFM), optical (spectrophotometry), and structural (Raman spectroscopy) properties of the samples treated at different laser fluences (from 1.8 to 14 J/cm2) have been characterized after the laser treatments and also following long thermal annealing for simulating the operating conditions of thermionic converters. A significant improvement of the solar absorptance and selectivity, with a maximum value of about four times higher than the pristine sample at a temperature of 800 K, has been detected for sample surfaces treated at intermediate fluences. The effects observed have been related to the light trapping capability of the laser-induced nanotexturing, whereas a low selectivity, together with a high absorptance, could be revealed when the highest laser fluence was employed due to a significant presence of oxide species. The ageing process confirms the performance improvement shown when treated samples are used as solar absorbers, even though, due to chemical modification occurring at the surface, a decrease of the solar absorptance takes place. Interestingly, the sample showing the highest quantity of oxides preserves more efficiently the laser texturing. The observation of this behaviour allows to extend the applicability of the laser treatments since, by further nanostructuring of the Mo oxides, it could be beneficial also for sensing applications.

4.
Materials (Basel) ; 14(24)2021 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-34947270

RESUMEN

Magnesium aluminate and other alumina-based spinels attract attention due to their high hardness, high mechanical strength, and low dielectric constant. MgAl2O4 was produced by a solid-state reaction between MgO and α-Al2O3 powders. Mechanical activation for 30 min in a planetary ball mill was used to increase the reactivity of powders. Yttrium oxide and graphene were added to prevent abnormal grain growth during sintering. Samples were sintered by hot pressing under vacuum at 1450 °C. Phase composition and microstructure of sintered specimens were characterized by X-ray powder diffraction and scanning electron microscopy. Rietveld analysis revealed 100% pure spinel phase in all sintered specimens, and a decrease in crystallite size with the addition of yttria or graphene. Density measurements indicated that the mechanically activated specimen reached 99.6% relative density. Furthermore, the highest solar absorbance and highest spectral selectivity as a function of temperature were detected for the mechanically activated specimen with graphene addition. Mechanical activation is an efficient method to improve densification of MgAl2O4 prepared from mixed oxide powders, while additives improve microstructure and optical properties.

5.
Nano Lett ; 21(10): 4477-4483, 2021 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-33960788

RESUMEN

Two-dimensional laser-induced periodic surface structures with a deep-subwavelength periodicity (80 nm ≈ λ/10) are obtained for the first time on diamond surfaces. The distinctive surface nanotexturing is achieved by employing a single step technique that relies on irradiation with two temporally delayed and cross-polarized femtosecond-laser pulses (100 fs duration, 800 nm wavelength, 1 kHz repetition rate) generated with a Michelson-like interferometer configuration, followed by chemical etching of surface debris. In this Letter, we demonstrate that, if the delay between two consecutive pulses is ≤2 ps, the 2D periodicity of nanostructures can be tuned by controlling the number of pulses irradiating the surface. Under scanning mode, the method is effective in treating uniformly large areas of diamond, so to induce remarkable antireflection properties able to enhance the absorptance in the visible up to 50 times and to pave the route toward the creation of metasurfaces for future diamond-based optoelectronic devices.

6.
Nanomaterials (Basel) ; 11(4)2021 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-33919548

RESUMEN

Present environmental issues force the research to explore radically new concepts in sustainable and renewable energy production. In the present work, a functional fluid consisting of a stable colloidal suspension of maghemite magnetic nanoparticles in water was characterized from the points of view of thermoelectrical and optical properties, to evaluate its potential for direct electricity generation from thermoelectric effect enabled by the absorption of sunlight. These nanoparticles were found to be an excellent solar radiation absorber and simultaneously a thermoelectric power-output enhancer with only a very small volume fraction when the fluid was heated from the top. These findings demonstrate the investigated nanofluid's high promise as a heat transfer fluid for co-generating heat and power in brand new hybrid flat-plate solar thermal collectors where top-heating geometry is imposed.

7.
Materials (Basel) ; 13(24)2020 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-33348641

RESUMEN

Irradiation of diamond with femtosecond (fs) laser pulses in ultra-high vacuum (UHV) conditions results in the formation of surface periodic nanostructures able to strongly interact with visible and infrared light. As a result, native transparent diamond turns into a completely different material, namely "black" diamond, with outstanding absorptance properties in the solar radiation wavelength range, which can be efficiently exploited in innovative solar energy converters. Of course, even if extremely effective, the use of UHV strongly complicates the fabrication process. In this work, in order to pave the way to an easier and more cost-effective manufacturing workflow of black diamond, we demonstrate that it is possible to ensure the same optical properties as those of UHV-fabricated films by performing an fs-laser nanostructuring at ambient conditions (i.e., room temperature and atmospheric pressure) under a constant He flow, as inferred from the combined use of scanning electron microscopy, Raman spectroscopy, and spectrophotometry analysis. Conversely, if the laser treatment is performed under a compressed air flow, or a N2 flow, the optical properties of black diamond films are not comparable to those of their UHV-fabricated counterparts.

8.
Nanomaterials (Basel) ; 10(11)2020 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-33138159

RESUMEN

Nowadays, the use of lasers has become commonplace in everyday life, and laser protection has become an important field of scientific investigation, as well as a security issue. In this context, optical limiters are receiving increasing attention. This work focuses on the identification of the significant parameters affecting optical limiting properties of aqueous suspensions of pristine single-wall carbon nanohorns. The study is carried out on the spectral range, spanning from ultraviolet to near-infrared (355, 532 and 1064 nm). Optical nonlinear properties are systematically investigated as a function of nanohorn morphology, concentration, dimensions of aggregates, sample preparation procedure, nanostructure oxidation and the presence and concentration of surfactants to identify the role of each parameter in the nonlinear optical behavior of colloids. The size and morphology of individual nanoparticles were identified to primarily determine optical limiting. A cluster size effect was also demonstrated, showing more effective optical limiting in larger aggregates. Most importantly, we describe an original approach to identify the dominant nonlinear mechanism. This method requires simple transmittance measurements and a fitting procedure. In our suspensions, nonlinearity was identified to be of electronic origin at a 532 nm wavelength, while at 355 nm, it was found in the generation of bubbles.

9.
Sci Rep ; 9(1): 4701, 2019 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-30886163

RESUMEN

Despite their promising thermo-physical properties for direct solar absorption, carbon-based nanocolloids present some drawbacks, among which the unpleasant property of being potentially cytotoxic and harmful to the environment. In this work, a sustainable, stable and inexpensive colloid based on coffee is synthesized and its photo-thermal properties investigated. The proposed colloid consists of distilled water, Arabica coffee, glycerol and copper sulphate, which provide enhanced properties along with biocompatibility. The photo-thermal performance of the proposed fluid for direct solar absorption is analysed for different dilutions and compared with that of a traditional flat-plate collector. Tailor-made collectors, opportunely designed and realized via 3D-printing technique, were used for the experimental tests. The results obtained in field conditions, in good agreement with two different proposed models, show similar performance of the volumetric absorption using the proposed coffee-based colloids as compared to the classical systems based on a highly-absorbing surface. These results may encourage further investigations on simple, biocompatible and inexpensive colloids for direct solar absorption.


Asunto(s)
Materiales Biocompatibles/química , Café/química , Coloides/química , Coffea , Sulfato de Cobre/química , Glicerol/química , Modelos Químicos , Fenómenos Físicos , Energía Solar , Agua/química
10.
Sci Rep ; 7(1): 718, 2017 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-28386129

RESUMEN

We investigate the optical properties of LaB6 - based materials, as possible candidates for solid absorbers in Concentrating Solar Power (CSP) systems. Bulk LaB6 materials were thermally consolidated by hot pressing starting from commercial powders. To assess the solar absorbance and spectral selectivity properties, room-temperature hemispherical reflectance spectra were measured from the ultraviolet to the mid-infrared, considering different compositions, porosities and surface roughnesses. Thermal emittance at around 1100 K has been measured. Experimental results showed that LaB6 can have a solar absorbance comparable to that of the most advanced solar absorber material in actual plants such as Silicon Carbide, with a higher spectral selectivity. Moreover, LaB6 has also the appealing characteristics to be a thermionic material, so that it could act at the same time both as direct high-temperature solar absorber and as electron source, significantly reducing system complexity in future concentrating solar thermionic systems and bringing a real innovation in this field.

11.
Materials (Basel) ; 9(6)2016 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-28773611

RESUMEN

In the present study, nearly fully dense monolithic ZrC samples are produced and broadly characterized from microstructural, mechanical and optical points of view. Specifically, 98% dense products are obtained by Spark Plasma Sintering (SPS) after 20 min dwell time at 1850 °C starting from powders preliminarily prepared by Self-propagating High-temperature Synthesis (SHS) followed by 20 min ball milling. A prolonged mechanical treatment up to 2 h of SHS powders does not lead to appreciable benefits. Vickers hardness of the resulting samples (17.5 ± 0.4 GPa) is reasonably good for monolithic ceramics, but the mechanical strength (about 250 MPa up to 1000 °C) could be further improved by suitable optimization of the starting powder characteristics. The very smoothly polished ZrC specimen subjected to optical measurements displays high absorption in the visible-near infrared region and low thermal emittance at longer wavelengths. Moreover, the sample exhibits goodspectral selectivity (2.1-2.4) in the 1000-1400 K temperature range. These preliminary results suggest that ZrC ceramics produced through the two-step SHS/SPS processing route can be considered as attractive reference materials for the development of innovative solar energy absorbers.

12.
Appl Opt ; 54(29): 8700-5, 2015 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-26479806

RESUMEN

Spectral emittance is a key topic in the study of new compositions, depositions, and mechanical machining of materials for solar absorption and for renewable energies in general. The present work reports on the realization and testing of a new experimental facility for the measurement of directional spectral emittance in the range of 2.5-20 µm. Our setup provides emittance spectral information in a completely controlled environment at medium-high temperatures up to 1200 K. We describe the layout and first tests on the device, comparing the results obtained for hafnium carbide and tantalum diboride ultrarefractory ceramic samples to previous quasi-monochromatic measurements carried out in the PROMES-CNRS (PROcedes, Materiaux et Energie Solaire- Centre National de la Recherche Scientifique, France) solar furnace, obtaining a good agreement. Finally, to assess the reliability of the widely used approach of estimating the spectral emittance from room-temperature reflectance spectrum, we compared the calculation in the 2.5-17 µm spectral range to the experimental high-temperature spectral emittance, obtaining that the spectral trend of calculated and measured curves is similar but the calculated emittance underestimates the measured value.

13.
Appl Opt ; 51(30): 7176-82, 2012 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-23089769

RESUMEN

Intralipid 20% was recently suggested as a diffusive reference standard for tissue simulating phantoms. In this work, we extend previously obtained results to other fat emulsions, specifically Intralipid 10%, Intralipid 30%, Lipovenoes 10%, Lipovenoes 10% PhosphoLipid Reduced, Lipovenoes 20%, Lipofundin S 10%, and Lipofundin S 20%. Of particular importance for practical applications, our measurements carried out at a wavelength of 751 nm show the following features. First, these products show high stability and small batch-to-batch variations in their diffusive optical properties, similar to Intralipid 20%. Second, the absorption coefficient of Intralipid, Lipovenoes, and Lipofundin S are very similar and their measured values are within the experimental errors; moreover the reduced scattering coefficient of Intralipid 20%, Lipovenoes 20%, and Lipofundin S 20% are similar and their measured values are within 5%. Third, the reduced scattering coefficient of Intralipid 10% and Intralipid 30% can be scaled from that of Intralipid 20% with an error of 9% and 2%, respectively. A similar scaling property is valid for Lipovenoes and Lipofundin S. We have verified that this scaling property depends on the composition of the fat emulsions: If the ingredients exactly scale with the concentration then the reduced scattering coefficient almost exactly scale as well.


Asunto(s)
Emulsiones Grasas Intravenosas/química , Fantasmas de Imagen , Algoritmos , Emulsiones Grasas Intravenosas/normas , Humanos , Luz , Nefelometría y Turbidimetría/métodos , Nefelometría y Turbidimetría/normas , Tamaño de la Partícula , Estándares de Referencia , Reproducibilidad de los Resultados , Dispersión de Radiación , Espectrofotometría/métodos , Espectrofotometría/normas
14.
Nanoscale Res Lett ; 7(1): 96, 2012 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-22297089

RESUMEN

The full characterization of the optical properties of nanofluids consisting of single-wall carbon nanohorns of different morphologies in aqueous suspensions is carried out using a novel spectrophotometric technique. Information on the nanofluid scattering and absorption spectral characteristics is obtained by analyzing the data within the single scattering theory and validating the method by comparison with previous monochromatic measurements performed with a different technique. The high absorption coefficient measured joint to the very low scattering albedo opens promising application perspectives for single-wall carbon nanohorn-based fluid or solid suspensions. The proposed approximate approach can be extended also to other low-scattering turbid media.PACS: 78.35.+c Brillouin and Rayleigh scattering, other light scattering; 78.40.Ri absorption and reflection spectra, fullerenes and related materials; 81.05.U- carbon/carbon-based materials; 78.67.Bf optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures, nanocrystals, nanoparticles, and nanoclusters.

15.
Nanoscale Res Lett ; 6(1): 282, 2011 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-21711795

RESUMEN

In the present work, we investigated the scattering and spectrally resolved absorption properties of nanofluids consisting in aqueous and glycol suspensions of single-wall carbon nanohorns. The characteristics of these nanofluids were evaluated in view of their use as sunlight absorber fluids in a solar device. The observed nanoparticle-induced differences in optical properties appeared promising, leading to a considerably higher sunlight absorption with respect to the pure base fluids. Scattered light was found to be not more than about 5% with respect to the total attenuation of light. Both these effects, together with the possible chemical functionalization of carbon nanohorns, make this new kind of nanofluids very interesting for increasing the overall efficiency of the sunlight exploiting device. PACS: 78.40.Ri, 78.35.+c, 78.67.Bf, 88.40.fh, 88.40.fr, 81.05.U.

16.
Opt Lett ; 31(22): 3291-3, 2006 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-17072400

RESUMEN

Continuous-wave laser action has been demonstrated in a diode-pumped Yb:KYF(4) crystal. Crystal growth, spectroscopic measurements, and laser results are presented. A maximum output power of 505 mW, a slope efficiency of 43%, and a continuous wavelength tunability range of 65nm, from 1013 to 1078 nm, have been obtained at room temperature.

17.
J Phys Condens Matter ; 18(6): 2057-67, 2006 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-21697575

RESUMEN

We report on the spectroscopic characterization of Tm :KYF(4) and Ho :KYF(4) single crystals. The energy level splittings are given, as well as the Judd-Ofelt parameters, the polarized absorption and emission cross sections and the energy transfer coefficients. This allows to have a deeper understanding of the Tm-Ho-codoped KYF(4) system and shows KYF(4) to be a promising material for widely tunable and efficient 2 µm laser operation.

18.
Opt Express ; 13(22): 8980-92, 2005 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-19498932

RESUMEN

We present the Erbium (4)I(11/2) and (4)I(13/2) complete polarized spectroscopic investigation on a series of Er(3+),Ce(3+):BaY(2)F(8) single crystals as a function of Cerium concentration. The main results of room temperature lifetime investigation show that the (4)I(13/2) lifetime reduces from 15.6 ms to 10 ms, the (4)I(11/2) lifetime reduces from 8.3 ms to 0.2 ms and (4)S(3/2) lifetime reduces from 420 to 110 micros when adding 4% Ce-codoping. Moreover, in the same experimental conditions, the fluorescence intensity from (4)I(13/2) increases by four times when adding 4%Ce, and the intensity of the 3 microm (4)I(11/2) ?(4)I(13/2) transition becomes undetectable. The experimental data are interpreted with a rate equation model. The obtained results could be interesting in perspective of obtaining a low-threshold 1.5 microm Er laser.

19.
Opt Lett ; 29(14): 1638-40, 2004 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-15309844

RESUMEN

Continuous-wave mode locking (CW-ML) of a diode-pumped Nd3+:BaY2F8 laser is reported for the first time to our knowledge. Pulses as short as 4.8 ps were measured with a total output power of approximately 1 W at 1049 nm, corresponding to 3.4 W of absorbed power from the pump diode at 806 nm. A novel technique for passive stabilization of CW-ML has been demonstrated.

20.
Opt Lett ; 29(7): 715-7, 2004 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-15072368

RESUMEN

Continuous-wave laser action at approximately 2 microm is demonstrated in a Tm-Ho:KYF4 single crystal at room temperature. Crystal growth, spectroscopic measurements, and laser results are presented. An output power in excess of 250 mW is obtained with a tuning range of 99 nm, the largest ever published, to our knowledge, for Tm-Ho in any crystalline host.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...