Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 593(7859): 429-434, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-34012082

RESUMEN

Gene-editing technologies, which include the CRISPR-Cas nucleases1-3 and CRISPR base editors4,5, have the potential to permanently modify disease-causing genes in patients6. The demonstration of durable editing in target organs of nonhuman primates is a key step before in vivo administration of gene editors to patients in clinical trials. Here we demonstrate that CRISPR base editors that are delivered in vivo using lipid nanoparticles can efficiently and precisely modify disease-related genes in living cynomolgus monkeys (Macaca fascicularis). We observed a near-complete knockdown of PCSK9 in the liver after a single infusion of lipid nanoparticles, with concomitant reductions in blood levels of PCSK9 and low-density lipoprotein cholesterol of approximately 90% and about 60%, respectively; all of these changes remained stable for at least 8 months after a single-dose treatment. In addition to supporting a 'once-and-done' approach to the reduction of low-density lipoprotein cholesterol and the treatment of atherosclerotic cardiovascular disease (the leading cause of death worldwide7), our results provide a proof-of-concept for how CRISPR base editors can be productively applied to make precise single-nucleotide changes in therapeutic target genes in the liver, and potentially in other organs.


Asunto(s)
Sistemas CRISPR-Cas , LDL-Colesterol/sangre , Edición Génica , Modelos Animales , Proproteína Convertasa 9/genética , Adenina/metabolismo , Animales , Células Cultivadas , Femenino , Hepatocitos/metabolismo , Humanos , Hígado/enzimología , Mutación con Pérdida de Función , Macaca fascicularis/sangre , Macaca fascicularis/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Mutagénesis Sitio-Dirigida , Proproteína Convertasa 9/sangre , Proproteína Convertasa 9/metabolismo , Factores de Tiempo
2.
Antib Ther ; 3(4): 271-284, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33644685

RESUMEN

Traditionally, non-specific chemical conjugation, such as acylation of amines on lysine or alkylation of thiols on cysteines, are widely used; however, they have several shortcomings. First, the lack of site-specificity results in heterogeneous products and irreproducible processes. Second, potential modifications near the complementarity determining region (CDR) may reduce binding affinity and specificity. Conversely, site-specific methods produce well-defined and more homogenous antibody conjugates, ensuring developability and clinical applications. Moreover, several recent side-by-side comparisons of site-specific and stochastic methods have demonstrated that site-specific approaches are more likely to achieve their desired properties and functions, such as increased plasma stability, less variability in dose-dependent studies (particularly at low concentrations), enhanced binding efficiency, as well as increased tumor uptake. Herein we review several standard and practical site-specific bioconjugation methods for native antibodies, i.e., those without recombinant engineering. First, chemo-enzymatic techniques, namely transglutaminase (TGase)-mediated transamidation of a conserved glutamine residue and glycan remodeling of a conserved asparagine N-glycan (GlyCLICK), both in the Fc region. Second, chemical approaches such as selective reduction of disulfides (ThioBridge) and N-terminal amine modifications. Furthermore, we list site-specific antibody-drug conjugates (ADCs) in clinical trials along with the future perspectives of these site-specific methods.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...