Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Pathol ; 261(1): 5-10, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37352131

RESUMEN

The World Health Organization's tumor classification guidelines are frequently updated and renewed as knowledge of cancer biology advances. For instance, in 2021, a novel lung tumor subtype named SMARCA4-deficient, undifferentiated tumor (SMARCA4-dUT, code 8044/3) was included. To date, there is no defined cell model for SMARCA4-dUT that could be used to help thoracic clinicians and researchers in the study of this newly defined tumor type. As this tumor type was recently described, it is feasible that some cell models formerly classified as lung adenocarcinoma (LUAD) could now be better classified as SMARCA4-dUT. Thus, in this work, we aimed to identify a bona fide cell model for the experimental study of SMARCA4-dUT. We compared the differential expression profiles of 36 LUAD-annotated cell lines and 38 cell lines defined as rhabdoid in repositories. These comparative results were integrated with the mutation and expression profiles of the SWI/SNF complex members, and they were surveyed for the presence of the SMARCA4-dUT markers SOX2, SALL4, and CD34, measured by RT-qPCR and western blotting. Finally, the cell line with the paradigmatic SMARCA4-dUT markers was engrafted into immunocompromised mice to assess the histological morphology of the formed tumors and compare them with those formed by a bona fide LUAD cancer cell line. NCI-H522, formerly classified as LUAD, displayed expression profiles nearer to rhabdoid tumors than LUAD tumors. Furthermore, NCI-H522 has most of the paradigmatic features of SMARCA4-dUT: hemizygous inactivating mutation of SMARCA4, severe SMARCA2 downregulation, and high-level expression of stem cell markers SOX2 and SALL4. In addition, the engrafted tumors of NCI-H522 did not display a typical differentiated glandular structure as other bona fide LUAD cell lines (A549) do but had rather a largely undifferentiated morphology, characteristic of SMARCA4-dUT. Thus, we propose the NCI-H522 as the first bona fide cell line model of SMARCA4-dUT. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
Adenocarcinoma del Pulmón , Adenocarcinoma , Neoplasias Pulmonares , Tumor Rabdoide , Animales , Ratones , Adenocarcinoma/patología , Biomarcadores de Tumor/análisis , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Mutación , Tumor Rabdoide/patología
2.
Mol Cancer ; 22(1): 39, 2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36810086

RESUMEN

Hematological malignancies are a highly heterogeneous group of diseases with varied molecular and phenotypical characteristics. SWI/SNF (SWItch/Sucrose Non-Fermentable) chromatin remodeling complexes play significant roles in the regulation of gene expression, being essential for processes such as cell maintenance and differentiation in hematopoietic stem cells. Furthermore, alterations in SWI/SNF complex subunits, especially in ARID1A/1B/2, SMARCA2/4, and BCL7A, are highly recurrent across a wide variety of lymphoid and myeloid malignancies. Most genetic alterations cause a loss of function of the subunit, suggesting a tumor suppressor role. However, SWI/SNF subunits can also be required for tumor maintenance or even play an oncogenic role in certain disease contexts. The recurrent alterations of SWI/SNF subunits highlight not only the biological relevance of SWI/SNF complexes in hematological malignancies but also their clinical potential. In particular, increasing evidence has shown that mutations in SWI/SNF complex subunits confer resistance to several antineoplastic agents routinely used for the treatment of hematological malignancies. Furthermore, mutations in SWI/SNF subunits often create synthetic lethality relationships with other SWI/SNF or non-SWI/SNF proteins that could be exploited therapeutically. In conclusion, SWI/SNF complexes are recurrently altered in hematological malignancies and some SWI/SNF subunits may be essential for tumor maintenance. These alterations, as well as their synthetic lethal relationships with SWI/SNF and non-SWI/SNF proteins, may be pharmacologically exploited for the treatment of diverse hematological cancers.


Asunto(s)
Antineoplásicos , Neoplasias Hematológicas , Neoplasias , Humanos , Neoplasias/metabolismo , Genes Supresores de Tumor , Mutación , Neoplasias Hematológicas/genética
3.
Cancers (Basel) ; 12(12)2020 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-33321963

RESUMEN

Mammalian SWI/SNF (SWitch/Sucrose Non-Fermentable) complexes are ATP-dependent chromatin remodelers whose subunits have emerged among the most frequently mutated genes in cancer. Studying SWI/SNF function in cancer cell line models has unveiled vulnerabilities in SWI/SNF-mutant tumors that can lead to the discovery of new therapeutic drugs. However, choosing an appropriate cancer cell line model for SWI/SNF functional studies can be challenging because SWI/SNF subunits are frequently altered in cancer by various mechanisms, including genetic alterations and post-transcriptional mechanisms. In this work, we combined genomic, transcriptomic, and proteomic approaches to study the mutational status and the expression levels of the SWI/SNF subunits in a panel of 38 lung adenocarcinoma (LUAD) cell lines. We found that the SWI/SNF complex was mutated in more than 76% of our LUAD cell lines and there was a high variability in the expression of the different SWI/SNF subunits. These results underline the importance of the SWI/SNF complex as a tumor suppressor in LUAD and the difficulties in defining altered and unaltered cell models for the SWI/SNF complex. These findings will assist researchers in choosing the most suitable cellular models for their studies of SWI/SNF to bring all of its potential to the development of novel therapeutic applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...