Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Bone ; 184: 117113, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38703937

RESUMEN

Ca2+/calmodulin-dependent protein kinase kinase 2 (CaMKK2) is a multi-functional, serine/threonine protein kinase with predominant roles in inflammation, systemic energy metabolism, and bone remodeling. We previously reported that global ablation of CaMKK2 or its systemic pharmacological inhibition led to bone mass accrual in mice by stimulating osteoblasts and inhibiting osteoclasts. However, a direct, cell-intrinsic role for the kinase in the osteoblast lineage has not been established. Here we report that conditional deletion of CaMKK2 from osteoprogenitors, using the Osterix 1 (Osx1) - GFP::Cre (tetracycline-off) mouse line, resulted in increased trabecular bone mass due to an acute stimulation of osteoblast function in male and female mice. The acute simulation of osteoblasts and bone formation following conditional ablation of osteoprogenitor-derived CaMKK2 was sustained only in female mice. Periosteal bone formation at the cortical bone was enhanced only in male conditional knockout mice without altering cortical bone mass or strength. Prolonged deletion of CaMKK2 in early osteoblasts was accompanied by a stimulation of osteoclasts in both sexes, indicating a coupling effect. Notably, alterations in trabecular and cortical bone mass were absent in the doxycycline-removed "Cre-only" Osx1-GFP::Cre mice. Thus, the increase in osteoblast function at the trabecular and cortical bone surfaces following the conditional deletion of CaMKK2 in osteoprogenitors is indicative of a direct but sex-divergent role for the kinase in osteoblasts.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38571325

RESUMEN

OBJECTIVE: The Cancer Genome Atlas (TCGA) project identified favorable prognosis regarding the ultra-mutated endometrial cancer (EC) subtype linked to polymerase epsilon gene (POLE) mutations. This study investigated POLE mutations in EC of Indian patients. METHODS: This retrospective analytical study was conducted between January 2016 and January 2023 at the Government Medical College, Kozhikode, and the MVR Cancer Center, Kozhikode, Kerala. Sanger sequencing of POLE gene exons 9 and 13 in 151 EC patients was carried out to analyze the relationship between mutations and epidemiological factors, clinicopathologic features, and treatment outcomes. RESULTS: Among 151 cases enrolled, 39 were unique POLE-mutated cases. Significant associations were high-grade tumors, myometrial invasion >50%, and Lymph-vascular space invasion (LVSI). The median follow-up was 40 months (95% confidence interval [CI], 34-46). A lower mean disease-specific survival (DSS) of 51.7 months (95% CI, 43.7-59.6) was noted in the POLE-mutated group compared with 72.11 months (95% CI, 67.60-76.62) for the POLE wild-type. A statistically significant hazard ratio (HR) of 2.683 for DSS in the POLE-mutated group was noted. In advanced stages (FIGO stages II-IV), a nine-fold HR for DSS and overall survival (OS) compared with POLE wild-type was identified. After controlling for treatment effects using Cox proportional HR, advanced-stage POLE-mutated tumors had a significantly higher HR of 8.67 for DSS compared with POLE-wild-type tumors of the same stage. CONCLUSION: This study identified a unique set of POLE mutations in Indian EC patients associated with poor prognosis, which were particularly pronounced in advanced stages. Advanced stage of presentation, type of POLE mutations, and possibly ethnicity are predictors of adverse outcomes in POLE-mutated EC. The present study highlights ethnicity as a determinant of phenotypic expression of genetic change.

3.
J Bone Miner Res ; 39(3): 298-314, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38477790

RESUMEN

Osteocytes sense and respond to mechanical force by controlling the activity of other bone cells. However, the mechanisms by which osteocytes sense mechanical input and transmit biological signals remain unclear. Voltage-sensitive calcium channels (VSCCs) regulate calcium (Ca2+) influx in response to external stimuli. Inhibition or deletion of VSCCs impairs osteogenesis and skeletal responses to mechanical loading. VSCC activity is influenced by its auxiliary subunits, which bind the channel's α1 pore-forming subunit to alter intracellular Ca2+ concentrations. The α2δ1 auxiliary subunit associates with the pore-forming subunit via a glycosylphosphatidylinositol anchor and regulates the channel's calcium-gating kinetics. Knockdown of α2δ1 in osteocytes impairs responses to membrane stretch, and global deletion of α2δ1 in mice results in osteopenia and impaired skeletal responses to loading in vivo. Therefore, we hypothesized that the α2δ1 subunit functions as a mechanotransducer, and its deletion in osteocytes would impair skeletal development and load-induced bone formation. Mice (C57BL/6) with LoxP sequences flanking Cacna2d1, the gene encoding α2δ1, were crossed with mice expressing Cre under the control of the Dmp1 promoter (10 kb). Deletion of α2δ1 in osteocytes and late-stage osteoblasts decreased femoral bone quantity (P < .05) by DXA, reduced relative osteoid surface (P < .05), and altered osteoblast and osteocyte regulatory gene expression (P < .01). Cacna2d1f/f, Cre + male mice displayed decreased femoral strength and lower 10-wk cancellous bone in vivo micro-computed tomography measurements at the proximal tibia (P < .01) compared to controls, whereas Cacna2d1f/f, Cre + female mice showed impaired 20-wk cancellous and cortical bone ex vivo micro-computed tomography measurements (P < .05) vs controls. Deletion of α2δ1 in osteocytes and late-stage osteoblasts suppressed load-induced calcium signaling in vivo and decreased anabolic responses to mechanical loading in male mice, demonstrating decreased mechanosensitivity. Collectively, the α2δ1 auxiliary subunit is essential for the regulation of osteoid-formation, femur strength, and load-induced bone formation in male mice.


The ability of bone to sense and respond to forces generated during daily physical activities is essential to skeletal health. Although several bone cell types contribute to the maintenance of bone health, osteocytes are thought to be the primary mechanosensitive cells; however, the mechanisms through which these cells perceive mechanical stimuli remains unclear. Previous work has shown that voltage sensitive calcium channels are necessary for bone to sense mechanical force; yet the means by which those channels translate the physical signal into a biochemical signal is unclear. Data within this manuscript demonstrate that the extracellular α2δ1 subunit of voltage sensitive calcium channels is necessary for load-induced bone formation as well as to enable calcium influx within osteocytes. As this subunit enables physical interactions of the channel pore with the extracellular matrix, our data demonstrate the need for the α2δ1 subunit for mechanically induced bone adaptation, thus serving as a physical conduit through which mechanical signals from the bone matrix are transduced into biochemical signals by enabling calcium influx into osteocytes.


Asunto(s)
Osteocitos , Osteogénesis , Ratones , Masculino , Femenino , Animales , Osteocitos/metabolismo , Osteogénesis/genética , Calcio/metabolismo , Microtomografía por Rayos X , Ratones Endogámicos C57BL , Osteoblastos/metabolismo , Fémur/diagnóstico por imagen , Fémur/metabolismo , Canales de Calcio/genética , Canales de Calcio/metabolismo
4.
JBMR Plus ; 8(2): ziad008, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38505532

RESUMEN

Voltage-sensitive calcium channels (VSCCs) influence bone structure and function, including anabolic responses to mechanical loading. While the pore-forming (α1) subunit of VSCCs allows Ca2+ influx, auxiliary subunits regulate the biophysical properties of the pore. The α2δ1 subunit influences gating kinetics of the α1 pore and enables mechanically induced signaling in osteocytes; however, the skeletal function of α2δ1 in vivo remains unknown. In this work, we examined the skeletal consequences of deleting Cacna2d1, the gene encoding α2δ1. Dual-energy X-ray absorptiometry and microcomputed tomography imaging demonstrated that deletion of α2δ1 diminished bone mineral content and density in both male and female C57BL/6 mice. Structural differences manifested in both trabecular and cortical bone for males, while the absence of α2δ1 affected only cortical bone in female mice. Deletion of α2δ1 impaired skeletal mechanical properties in both sexes, as measured by three-point bending to failure. While no changes in osteoblast number or activity were found for either sex, male mice displayed a significant increase in osteoclast number, accompanied by increased eroded bone surface and upregulation of genes that regulate osteoclast differentiation. Deletion of α2δ1 also rendered the skeleton insensitive to exogenous mechanical loading in males. While previous work demonstrates that VSCCs are essential for anabolic responses to mechanical loading, the mechanism by which these channels sense and respond to force remained unclear. Our data demonstrate that the α2δ1 auxiliary VSCC subunit functions to maintain baseline bone mass and strength through regulation of osteoclast activity and also provides skeletal mechanotransduction in male mice. These data reveal a molecular player in our understanding of the mechanisms by which VSCCs influence skeletal adaptation.

5.
J Periodontal Res ; 2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38243688

RESUMEN

BACKGROUND: Periodontitis is a chronic inflammatory disease defined by the pathologic loss of the periodontal ligament and alveolar bone in relation to aging. Although clinical cohort studies reported that periodontitis is significantly elevated in males compared to females, emerging evidence indicates that females with dementia are at a greater risk for periodontitis and decreased alveolar bone. OBJECTIVE: This study aimed to evaluate whether dementia is a potential sex-dependent risk factor for periodontal bone loss using an experimental model of periodontitis induced in the triple transgenic (3x-Tg) dementia-like mice and clinical samples collected from senior 65 plus age patients with diagnosed dementia. MATERIALS AND METHODS: We induced periodontitis in dementia-like triple-transgenic (3x-Tg) male and female mice and age-matched wild-type (WT) control mice by ligature placement. Then, alveolar bone loss and osteoclast activity were evaluated using micro-CT and in situ imaging assays. In addition, we performed dental examinations on patients with diagnosed dementia. Finally, dementia-associated Aß42 and p-Tau (T181) and osteoclastogenic receptor activator of nuclear factor kappa-Β ligand (RANKL) in gingival crevicular fluid (GCF) collected from mice and clinical samples were measured by enzyme-linked immunosorbent assay (ELISA). RESULTS: Alveolar bone loss and in situ osteoclast activity were significantly elevated in periodontal lesions of 3x-Tg females but not males, compared to wild-type control mice. In addition, we also observed that the probing pocket depth (PPD) was also significantly elevated in female patients with dementia. Using ELISA assay, we observed that females had elevated levels of osteoclastogenic RANKL and dementia-associated Aß42 and p-Tau (T181) in the GCF collected from experimental periodontitis lesions and clinical samples. CONCLUSION: Altogether, we demonstrate that females with dementia have an increased risk for periodontal bone loss compared to males.

6.
J Vis Exp ; (201)2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-38078617

RESUMEN

Post-traumatic osteoarthritis (PTOA) is responsible for 12% of all osteoarthritis cases in the United States. PTOA can be initiated by a single traumatic event, such as a high-impact load acting on articular cartilage, or by joint instability, as occurs with anterior cruciate ligament rupture. There are no effective therapeutics to prevent PTOA currently. Developing a reliable animal model of PTOA is necessary to better understand the mechanisms by which cartilage damage proceeds and to investigate novel treatment strategies to alleviate or prevent the progression of PTOA. This protocol describes an open, drop tower-based rabbit femoral condyle impact model to induce cartilage damage. This model delivered peak loads of 579.1 ± 71.1 N, and peak stresses of 81.9 ± 10.1 MPa with a time-to-peak load of 2.4 ± 0.5 ms. Articular cartilage from impacted medial femoral condyles (MFCs) had higher rates of apoptotic cells (p = 0.0058) and possessed higher Osteoarthritis Research Society International (OARSI) scores of 3.38 ± 1.43 compared to the non-impacted contralateral MFCs (0.56 ± 0.42), and other cartilage surfaces of the impacted knee (p < 0.0001). No differences in OARSI scores were detected among the non-impacted articular surfaces (p > 0.05).


Asunto(s)
Lesiones del Ligamento Cruzado Anterior , Cartílago Articular , Osteoartritis , Animales , Conejos , Osteoartritis/etiología , Articulación de la Rodilla , Fémur
7.
Immunometabolism (Cobham) ; 5(4): e00031, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37849987

RESUMEN

Post-traumatic osteoarthritis (PTOA) is a multifactorial disease of the cartilage, synovium, and subchondral bone resulting from direct joint trauma and altered joint mechanics after traumatic injury. There are no current disease-modifying therapies for PTOA, and early surgical interventions focused on stabilizing the joint do not halt disease progression. Chronic pain and functional disability negatively affect the quality of life and take an economic toll on affected patients. While multiple mechanisms are at play in disease progression, joint inflammation is a key contributor. Impact-induced mitochondrial dysfunction and cell death or altered joint mechanics after trauma culminate in inflammatory cytokine release from synoviocytes and chondrocytes, cartilage catabolism, suppression of cartilage anabolism, synovitis, and subchondral bone disease, highlighting the complexity of the disease. Current understanding of the cellular and molecular mechanisms underlying the disease pathology has allowed for the investigation of a variety of therapeutic strategies that target unique apoptotic and/or inflammatory processes in the joint. This review provides a concise overview of the inflammatory and apoptotic mechanisms underlying PTOA pathogenesis and identifies potential therapeutic targets to mitigate disease progression. We highlight Ca2+/calmodulin-dependent protein kinase kinase 2 (CaMKK2), a serine/threonine protein kinase that was recently identified to play a role in murine and human osteoarthritis pathogenesis by coordinating chondrocyte inflammatory responses and apoptosis. Given its additional effects in regulating macrophage inflammatory signaling and bone remodeling, CaMKK2 emerges as a promising disease-modifying therapeutic target against PTOA.

8.
Bone Rep ; 18: 101658, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37425196

RESUMEN

Post-traumatic osteoarthritis (PTOA) develops secondary to a joint injury and accounts for 12 % of all osteoarthritis. These injuries, often of the lower extremity joints, occur due to trauma or accidents related to athletic or military activities. They primarily affect younger individuals although PTOA can occur across the spectrum of age. Pain and functional disability caused by PTOA confer a heavy economic toll on patients, in addition to detrimentally affecting their quality of life. Both high energy injuries that cause articular surface fracture with or without subchondral bone disruption and low-energy injuries involving joint dislocations or ligamentous injury cause PTOA, albeit through different mechanisms. Regardless, chondrocyte death, mitochondrial dysfunction, reactive oxygen species production, subchondral bone remodeling, inflammation and cytokine release in the cartilage and synovium play integral roles in the pathogenesis of PTOA. Evolving surgical methods are focused on stabilizing articular surface and joint structure congruity. However, to date there are no disease modifying medical therapies against PTOA. Increased recent understanding of the pathogenesis of the subchondral bone and synovial inflammation as well as that of chondrocyte mitochondrial dysfunction and apoptosis have led to the investigation of new therapeutics targeting these mechanisms to prevent or delay PTOA. This review discusses new advances in our understanding of cellular mechanisms underlying PTOA, and therapeutic approaches that are potentially effective in reducing the self-propagating cycle of subchondral bone alterations, inflammation, and cartilage degradation. Within this context, we focus therapeutic options involving anti-inflammatory and anti-apoptotic candidates that could prevent PTOA.

9.
Mol Metab ; 75: 101761, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37380024

RESUMEN

OBJECTIVE: The AMP-activated protein kinase (AMPK) gets activated in response to energetic stress such as contractions and plays a vital role in regulating various metabolic processes such as insulin-independent glucose uptake in skeletal muscle. The main upstream kinase that activates AMPK through phosphorylation of α-AMPK Thr172 in skeletal muscle is LKB1, however some studies have suggested that Ca2+/calmodulin-dependent protein kinase kinase 2 (CaMKK2) acts as an alternative kinase to activate AMPK. We aimed to establish whether CaMKK2 is involved in activation of AMPK and promotion of glucose uptake following contractions in skeletal muscle. METHODS: A recently developed CaMKK2 inhibitor (SGC-CAMKK2-1) alongside a structurally related but inactive compound (SGC-CAMKK2-1N), as well as CaMKK2 knock-out (KO) mice were used. In vitro kinase inhibition selectivity and efficacy assays, as well as cellular inhibition efficacy analyses of CaMKK inhibitors (STO-609 and SGC-CAMKK2-1) were performed. Phosphorylation and activity of AMPK following contractions (ex vivo) in mouse skeletal muscles treated with/without CaMKK inhibitors or isolated from wild-type (WT)/CaMKK2 KO mice were assessed. Camkk2 mRNA in mouse tissues was measured by qPCR. CaMKK2 protein expression was assessed by immunoblotting with or without prior enrichment of calmodulin-binding proteins from skeletal muscle extracts, as well as by mass spectrometry-based proteomics of mouse skeletal muscle and C2C12 myotubes. RESULTS: STO-609 and SGC-CAMKK2-1 were equally potent and effective in inhibiting CaMKK2 in cell-free and cell-based assays, but SGC-CAMKK2-1 was much more selective. Contraction-stimulated phosphorylation and activation of AMPK were not affected with CaMKK inhibitors or in CaMKK2 null muscles. Contraction-stimulated glucose uptake was comparable between WT and CaMKK2 KO muscle. Both CaMKK inhibitors (STO-609 and SGC-CAMKK2-1) and the inactive compound (SGC-CAMKK2-1N) significantly inhibited contraction-stimulated glucose uptake. SGC-CAMKK2-1 also inhibited glucose uptake induced by a pharmacological AMPK activator or insulin. Relatively low levels of Camkk2 mRNA were detected in mouse skeletal muscle, but neither CaMKK2 protein nor its derived peptides were detectable in mouse skeletal muscle tissue. CONCLUSIONS: We demonstrate that pharmacological inhibition or genetic loss of CaMKK2 does not affect contraction-stimulated AMPK phosphorylation and activation, as well as glucose uptake in skeletal muscle. Previously observed inhibitory effect of STO-609 on AMPK activity and glucose uptake is likely due to off-target effects. CaMKK2 protein is either absent from adult murine skeletal muscle or below the detection limit of currently available methods.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina , Insulinas , Animales , Ratones , Proteínas Quinasas Activadas por AMP/metabolismo , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/metabolismo , Glucosa/metabolismo , Insulinas/metabolismo , Ratones Noqueados , Músculo Esquelético/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo
10.
Int J Mol Sci ; 24(7)2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-37047494

RESUMEN

A better understanding of molecular events following cartilage injury is required to develop treatments that prevent or delay the onset of trauma-induced osteoarthritis. In this study, alterations to SIRT1 activity in bovine articular cartilage explants were evaluated in the 24 h following a mechanical overload, and the effect of pharmacological SIRT1 activator SRT1720 on acute chondrocyte injury was assessed. SIRT1 enzymatic activity decreased as early as 5 min following the mechanical overload, and remained suppressed for at least 24 h. The chondrocyte injury response, including apoptosis, oxidative stress, secretion of inflammatory mediators, and alterations in cartilage matrix expression, was prevented with pharmacological activation of SIRT1 in a dose-dependent manner. Overall, the results implicate SIRT1 deactivation as a key molecular event in chondrocyte injury following a mechanical impact overload. As decreased SIRT1 signaling is associated with advanced age, these findings suggest that downregulated SIRT1 activity may be common to both age-related and injury-induced osteoarthritis.


Asunto(s)
Cartílago Articular , Enfermedades Musculoesqueléticas , Osteoartritis , Animales , Bovinos , Condrocitos/metabolismo , Sirtuina 1/genética , Sirtuina 1/metabolismo , Cartílago Articular/metabolismo , Apoptosis , Osteoartritis/etiología , Osteoartritis/metabolismo , Enfermedades Musculoesqueléticas/metabolismo
11.
Int J Mol Sci ; 24(5)2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36902150

RESUMEN

Calcium/calmodulin (CaM)-dependent protein kinase kinase 2 (CaMKK2) regulates bone remodeling through its effects on osteoblasts and osteoclasts. However, its role in osteocytes, the most abundant bone cell type and the master regulator of bone remodeling, remains unknown. Here we report that the conditional deletion of CaMKK2 from osteocytes using Dentine matrix protein 1 (Dmp1)-8kb-Cre mice led to enhanced bone mass only in female mice owing to a suppression of osteoclasts. Conditioned media isolated from female CaMKK2-deficient osteocytes inhibited osteoclast formation and function in in vitro assays, indicating a role for osteocyte-secreted factors. Proteomics analysis revealed significantly higher levels of extracellular calpastatin, a specific inhibitor of calcium-dependent cysteine proteases calpains, in female CaMKK2 null osteocyte conditioned media, compared to media from female control osteocytes. Further, exogenously added non-cell permeable recombinant calpastatin domain I elicited a marked, dose-dependent inhibition of female wild-type osteoclasts and depletion of calpastatin from female CaMKK2-deficient osteocyte conditioned media reversed the inhibition of matrix resorption by osteoclasts. Our findings reveal a novel role for extracellular calpastatin in regulating female osteoclast function and unravel a novel CaMKK2-mediated paracrine mechanism of osteoclast regulation by female osteocytes.


Asunto(s)
Osteoclastos , Osteocitos , Animales , Femenino , Ratones , Calcio/metabolismo , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/metabolismo , Medios de Cultivo Condicionados/farmacología , Osteoclastos/metabolismo , Osteocitos/metabolismo , Caracteres Sexuales
12.
Biomolecules ; 12(12)2022 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-36551284

RESUMEN

Our understanding of how osteocytes, the principal mechanosensors within bone, sense and perceive force remains unclear. Previous work identified "tethering elements" (TEs) spanning the pericellular space of osteocytes and transmitting mechanical information into biochemical signals. While we identified the heparan sulfate proteoglycan perlecan (PLN) as a component of these TEs, PLN must attach to the cell surface to induce biochemical responses. As voltage-sensitive calcium channels (VSCCs) are critical for bone mechanotransduction, we hypothesized that PLN binds the extracellular α2δ1 subunit of VSCCs to couple the bone matrix to the osteocyte membrane. Here, we showed co-localization of PLN and α2δ1 along osteocyte dendritic processes. Additionally, we quantified the molecular interactions between α2δ1 and PLN domains and demonstrated for the first time that α2δ1 strongly associates with PLN via its domain III. Furthermore, α2δ1 is the binding site for the commonly used pain drug, gabapentin (GBP), which is associated with adverse skeletal effects when used chronically. We found that GBP disrupts PLN::α2δ1 binding in vitro, and GBP treatment in vivo results in impaired bone mechanosensation. Our work identified a novel mechanosensory complex within osteocytes composed of PLN and α2δ1, necessary for bone force transmission and sensitive to the drug GBP.


Asunto(s)
Proteoglicanos de Heparán Sulfato , Mecanotransducción Celular , Proteoglicanos de Heparán Sulfato/metabolismo , Gabapentina/farmacología , Proteínas de la Matriz Extracelular/metabolismo , Canales de Calcio/genética , Canales de Calcio/metabolismo
13.
Stem Cell Rev Rep ; 18(7): 2513-2521, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35262902

RESUMEN

Little is known about a regulatory role of CaMKK2 for hematopoietic stem (HSC) and progenitor (HPC) cell function. To assess this, we used Camkk2-/- and wild type (WT) control mouse bone marrow (BM) cells. BM cells were collected/processed and compared under hypoxia (3% oxygen; physioxia) vs. ambient air (~21% oxygen). Subjecting cells collected to ambient air, even for a few minutes, causes a stress that we termed Extra Physiological Shock/Stress (EPHOSS) that causes differentiation of HSCs and HPCs. We consider physioxia collection/processing a more relevant way to assess HSC/HPC numbers and function, as the cells remain in an oxygen tension closer physiologic conditions. Camkk2-/- cells collected/processed at 3% oxygen had positive and negative effects respectively on HSCs (by engraftment using competitive transplantation with congenic donor and competitor cells and lethally irradiated congenic recipient mice), and HPCs (by colony forming assays of CFU-GM, BFU-E, and CFU-GEMM) compared to WT cells processed in ambient air. Thus, with cells collected/processed under physioxia, and therefore never exposed and naïve to ambient air conditions, CaMKK2 not only appears to act as an HSC to HPC differentiation fate determinant, but as we found for other intracellular mediators, the Camkk-/- mouse BM cells were relatively resistant to effects of EPHOSS. This information is of potential use for modulation of WT BM HSCs and HPCs for future clinical advantage.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Oxígeno , Animales , Células de la Médula Ósea , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/genética , Ratones , Ratones Noqueados , Oxígeno/farmacología
14.
Cell ; 185(5): 896-915.e19, 2022 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-35180381

RESUMEN

The emerging SARS-CoV-2 variants of concern (VOCs) threaten the effectiveness of current COVID-19 vaccines administered intramuscularly and designed to only target the spike protein. There is a pressing need to develop next-generation vaccine strategies for broader and long-lasting protection. Using adenoviral vectors (Ad) of human and chimpanzee origin, we evaluated Ad-vectored trivalent COVID-19 vaccines expressing spike-1, nucleocapsid, and RdRp antigens in murine models. We show that single-dose intranasal immunization, particularly with chimpanzee Ad-vectored vaccine, is superior to intramuscular immunization in induction of the tripartite protective immunity consisting of local and systemic antibody responses, mucosal tissue-resident memory T cells and mucosal trained innate immunity. We further show that intranasal immunization provides protection against both the ancestral SARS-CoV-2 and two VOC, B.1.1.7 and B.1.351. Our findings indicate that respiratory mucosal delivery of Ad-vectored multivalent vaccine represents an effective next-generation COVID-19 vaccine strategy to induce all-around mucosal immunity against current and future VOC.


Asunto(s)
Vacunas contra la COVID-19/administración & dosificación , COVID-19/prevención & control , Inmunidad Mucosa , Administración Intranasal , Animales , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Linfocitos B/inmunología , Linfocitos B/metabolismo , COVID-19/virología , Vacunas contra la COVID-19/inmunología , Citocinas/sangre , Vectores Genéticos/genética , Vectores Genéticos/inmunología , Vectores Genéticos/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Pruebas de Neutralización , Nucleocápside/genética , Nucleocápside/inmunología , Nucleocápside/metabolismo , Pan troglodytes , SARS-CoV-2/genética , SARS-CoV-2/inmunología , SARS-CoV-2/aislamiento & purificación , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismo
16.
Sci Rep ; 11(1): 22593, 2021 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-34799645

RESUMEN

Mesenchymal progenitors differentiate into several tissues including bone, cartilage, and adipose. Targeting these cells in vivo is challenging, making mesenchymal progenitor cell lines valuable tools to study tissue development. Mesenchymal stem cells (MSCs) can be isolated from humans and animals; however, obtaining homogenous, responsive cells in a reproducible fashion is challenging. As such, we developed two mesenchymal progenitor cell (MPC) lines, MPC1 and MPC2, generated from bone marrow of male C57BL/6 mice. These cells were immortalized using the temperature sensitive large T-antigen, allowing for thermal control of proliferation and differentiation. Both MPC1 and MPC2 cells are capable of osteogenic, adipogenic, and chondrogenic differentiation. Under osteogenic conditions, both lines formed mineralized nodules, and stained for alizarin red and alkaline phosphatase, while expressing osteogenic genes including Sost, Fgf23, and Dmp1. Sost and Dmp1 mRNA levels were drastically reduced with addition of parathyroid hormone, thus recapitulating in vivo responses. MPC cells secreted intact (iFGF23) and C-terminal (cFGF23) forms of the endocrine hormone FGF23, which was upregulated by 1,25 dihydroxy vitamin D (1,25D). Both lines also rapidly entered the adipogenic lineage, expressing adipose markers after 4 days in adipogenic media. MPC cells were also capable of chondrogenic differentiation, displaying increased expression of cartilaginous genes including aggrecan, Sox9, and Comp. With the ability to differentiate into multiple mesenchymal lineages and mimic in vivo responses of key regulatory genes/proteins, MPC cells are a valuable model to study factors that regulate mesenchymal lineage allocation as well as the mechanisms that dictate transcription, protein modification, and secretion of these factors.


Asunto(s)
Adipocitos/citología , Técnicas de Cultivo de Célula , Condrocitos/citología , Células Madre Mesenquimatosas/citología , Osteocitos/citología , Animales , Diferenciación Celular , Línea Celular , Linaje de la Célula , Proliferación Celular , Factor-23 de Crecimiento de Fibroblastos/metabolismo , Inmunofenotipificación , Masculino , Ratones , Ratones Endogámicos C57BL , ARN Mensajero/metabolismo
17.
J Cell Commun Signal ; 15(2): 283-290, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33136287

RESUMEN

Calcium/calmodulin-dependent protein kinase kinase 2 (CAMKK2) is a serine/threonine-protein kinase belonging to the Ca2+/calmodulin-dependent protein kinase subfamily. CAMKK2 has an autocatalytic site, which gets exposed when Ca2+/calmodulin (CAM) binds to it. This results in autophosphorylation and complete activation of CAMKK2. The three major known downstream targets of CAMKK2 are 5'-adenosine monophosphate (AMP)-activated protein kinase (AMPKα), calcium/calmodulin-dependent protein kinase 1 (CAMK1) and calcium/calmodulin-dependent protein kinase 4 (CAMK4). Activation of these targets by CAMKK2 is important for the maintenance of different cellular and physiological processes within the cell. CAMKK2 is found to be important in neuronal development, bone remodeling, adipogenesis, and systemic glucose homeostasis, osteoclastgensis and postnatal myogensis. CAMKK2 is reported to be involved in pathologies like Duchenne muscular dystrophy, inflammation, osteoporosis and bone remodeling and is also reported to be overexpressed in prostate cancer, hepatic cancer, ovarian and gastric cancer. CAMKK2 is involved in increased cell proliferation and migration through CAMKK2/AMPK pathway in prostate cancer and activation of AKT in ovarian cancer. Although CAMKK2 is a molecule of great importance, a public resource of the CAMKK2 signaling pathway is currently lacking. Therefore, we carried out detailed data mining and documentation of the signaling events associated with CAMKK2 from published literature and developed an integrated reaction map of CAMKK2 signaling. This resulted in the cataloging of 285 reactions belonging to the CAMKK2 signaling pathway, which includes 33 protein-protein interactions, 74 post-translational modifications, 7 protein translocation events, and 22 activation/inhibition events. Besides, 124 gene regulation events and 25 activator/inhibitors involved in CAMKK2 activation were also cataloged. The CAMKK2 signaling pathway map data is made freely accessible through WikiPathway database ( https://www.wikipathways.org/index.php/Pathway:WP4874 ). We expect that data on a signaling map of CAMKK2 will provide the scientific community with an improved platform to facilitate further molecular as well as biomedical investigations on CAMKK2 and its utility in the development of biomarkers and therapeutic targets.

18.
Bone Res ; 8(1): 40, 2020 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-33298883

RESUMEN

Exercise benefits the musculoskeletal system and reduces the effects of cancer. The effects of exercise are multifactorial, where metabolic changes and tissue adaptation influence outcomes. Mechanical signals, a principal component of exercise, are anabolic to the musculoskeletal system and restrict cancer progression. We examined the mechanisms through which cancer cells sense and respond to low-magnitude mechanical signals introduced in the form of vibration. Low-magnitude, high-frequency vibration was applied to human breast cancer cells in the form of low-intensity vibration (LIV). LIV decreased matrix invasion and impaired secretion of osteolytic factors PTHLH, IL-11, and RANKL. Furthermore, paracrine signals from mechanically stimulated cancer cells, reduced osteoclast differentiation and resorptive capacity. Disconnecting the nucleus by knockdown of SUN1 and SUN2 impaired LIV-mediated suppression of invasion and osteolytic factor secretion. LIV increased cell stiffness; an effect dependent on the LINC complex. These data show that mechanical vibration reduces the metastatic potential of human breast cancer cells, where the nucleus serves as a mechanosensory apparatus to alter cell structure and intercellular signaling.

19.
J Histochem Cytochem ; 68(3): 199-208, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31928129

RESUMEN

Approximately 5% to 10% of all bone fractures do not heal completely, contributing to significant patient suffering and medical costs. Even in healthy individuals, fracture healing is associated with significant downtime and loss of productivity. However, no pharmacological treatments are currently available to promote efficient bone healing. A better understanding of the underlying molecular mechanisms is crucial for developing novel therapies to hasten healing. The early reparative callus that forms around the site of bone injury is a fragile tissue consisting of shifting cell populations held together by loose connective tissue. The delicate callus is challenging to section and is vulnerable to disintegration during the harsh steps of immunostaining, namely, decalcification, deparaffinization, and antigen retrieval. Here, we describe an improved methodology for processing early-stage fracture calluses and immunofluorescence labeling of the sections to visualize the temporal (timing) and spatial (location) patterns of cellular and molecular events that regulate bone healing. This method has a short turnaround time from sample collection to microscopy as it does not require lengthy decalcification. It preserves the structural integrity of the fragile callus as the method does not entail deparaffinization or harsh methods of antigen retrieval. Our method can be adapted for high-throughput screening of drugs that promote efficacious bone healing.


Asunto(s)
Desarrollo Óseo/fisiología , Callo Óseo/metabolismo , Colorantes Fluorescentes/química , Curación de Fractura/fisiología , Imagen Óptica/métodos , Osteoblastos/metabolismo , Animales , Cartílago/metabolismo , Diferenciación Celular , Proliferación Celular , Fémur/metabolismo , Masculino , Ratones Endogámicos C57BL , Fenazinas/metabolismo , Transducción de Señal , Factores de Tiempo
20.
Curr Osteoporos Rep ; 17(4): 169-177, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31115859

RESUMEN

PURPOSE OF REVIEW: Age and metabolic disorders result in the accumulation of advanced glycation endproducts (AGEs), oxidative stress, and inflammation, which cumulatively cause a decline in skeletal health. Bone becomes increasingly vulnerable to fractures and its regenerative capacity diminishes under such conditions. With a rapidly aging population in the USA and the global increase in diabetes, efficacious, multi-dimensional therapies that can treat or prevent skeletal diseases associated with metabolic dysfunction and inflammatory disorders are acutely needed. RECENT FINDINGS: Ca2+/calmodulin-dependent protein kinase kinase 2 (CaMKK2) is a key regulator of nutrient intake, glucose metabolism, insulin production, and adipogenesis. Recent studies suggest a pivotal role for CaMKK2 in bone metabolism, fracture healing, and inflammation. Aside from rekindling previous concepts of CaMKK2 as a potent regulator of whole-body energy homeostasis, this review emphasizes CaMKK2 as a potential therapeutic target to treat skeletal diseases that underlie metabolic conditions and inflammation.


Asunto(s)
Envejecimiento/metabolismo , Enfermedades Óseas Metabólicas/metabolismo , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Curación de Fractura , Inflamación/metabolismo , Obesidad/metabolismo , Enfermedades Óseas Metabólicas/etiología , Diabetes Mellitus Tipo 2/complicaciones , Metabolismo Energético , Productos Finales de Glicación Avanzada/metabolismo , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...