Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biomol Struct Dyn ; : 1-14, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38686917

RESUMEN

Despite considerable improvement in therapy and diagnosis, brain tumors remain a global public health concern. Among all brain tumors, 80% are due to Glioblastoma. The average survival rate of a patient once diagnosed with glioblastoma is 15 months. Lately, the role of peptidase enzymes, especially Neprilysin, a neutral endopeptidase, is gaining attention for its role in tumor growth regulation. Neprilysin expressions are positively correlated with several tumors including GBM and reduced expression of NEP protein is associated with the pathogenesis of multiple tumors. One of the main reasons for NEP protein downregulation is the action of Histone deacetylase (HDAC) enzymes, especially HDAC1. Additionally, studies have reported that increased levels of HDAC1 are responsible for downregulating NEP gene expression. Hence, HDAC1 inhibition can be a good target to elevate NEP levels, which can be a good therapeutic approach to GBM. This study utilizes the computational drug repurposing tool, Schrodinger Maestro to identify HDAC1 inhibitors from the ZINC15 database.1379 FDA-approved drugs from the ZINC15 database were screened through molecular docking. Based on docking score and ligand-protein interaction, the top ten molecules were selected which were then subjected to binding energy calculation and molecular dynamics (MD) simulations. The three most active drugs from the MD simulations- ZINC22010649 (Panobinostat), ZINC4392649 (Tasimelteon) and ZINC1673 (Melphalan), were tested on C6 and U87 MG glioblastoma cells for cytotoxicity and HDAC1 protein levels using western blot analysis. Among the three drugs, Panobinostat exhibited potent cytotoxic action and showed a significant reduction in the HDAC1 protein levels.Communicated by Ramaswamy H. Sarma.

2.
Sci Rep ; 14(1): 9897, 2024 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-38688962

RESUMEN

Alzheimer's disease (AD) is associated with cognitive deficits and epigenetic deacetylation that can be modulated by natural products. The role of natural oxyresveratrol-ß-cyclodextrin (ORV) on cognition and histone deacetylase activity in AD is unclear. Herein, in-silico docking and molecular dynamics simulation analysis determined that oxyresveratrol potentially targets histone deacetylase-2 (HDAC2). We therefore evaluated the in vivo ameliorative effect of ORV against cognitive deficit, cerebral and hippocampal expression of HDAC in experimental AD rats. Intracerebroventricular injection of STZ (3 mg/kg) induced experimental AD and the rats were treated with low dose (200 mg/kg), high dose (400 mg/kg) of ORV and donepezil (10 mg/kg) for 21 days. The STZ-induced AD caused cognitive and behavioural deficits demonstrated by considerable increases in acetylcholinesterase activity and escape latency compared to sham control. The levels of malondialdehyde (MDA) and HDAC activity were significantly increased in AD disease group comparison to the sham. Interestingly, the ORV reversed the cognitive-behavioural deficit and prominently reduced the MDA and HDAC levels comparable to the effect of the standard drug, donepezil. The findings suggest anti-AD role of ORV via antioxidant effect and inhibition of HDAC in the hippocampal and frontal cortical area of rats for AD.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Modelos Animales de Enfermedad , Histona Desacetilasa 2 , Extractos Vegetales , Estilbenos , Estreptozocina , Animales , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Ratas , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/metabolismo , Estilbenos/farmacología , Estilbenos/uso terapéutico , Masculino , Histona Desacetilasa 2/metabolismo , beta-Ciclodextrinas/farmacología , Simulación del Acoplamiento Molecular , Hipocampo/metabolismo , Hipocampo/efectos de los fármacos , Malondialdehído/metabolismo , Donepezilo/farmacología , Donepezilo/uso terapéutico , Simulación de Dinámica Molecular , Ratas Wistar
3.
J Neuroimmune Pharmacol ; 19(1): 7, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38421496

RESUMEN

Inflammasomes are important modulators of inflammation. Dysregulation of inflammasomes can enhance vulnerability to conditions such as neurodegenerative diseases, autoinflammatory diseases, and metabolic disorders. Among various inflammasomes, Nucleotide-binding oligomerization domain leucine-rich repeat and pyrin domain-containing protein 3 (NLRP3) is the best-characterized inflammasome related to inflammatory and neurodegenerative diseases. NLRP3 is an intracellular sensor that recognizes pathogen-associated molecular patterns and damage-associated patterns resulting in the assembly and activation of NLRP3 inflammasome. The NLRP3 inflammasome includes sensor NLRP3, adaptor apoptosis-associated speck-like protein (ASC), and effector cysteine protease procaspase-1 that plays an imperative role in caspase-1 stimulation which further initiates a secondary inflammatory response. Regulation of NLRP3 inflammasome ameliorates NLRP3-mediated diseases. Much effort has been invested in studying the activation, and exploration of specific inhibitors and epigenetic mechanisms controlling NLRP3 inflammasome. This review gives an overview of the established NLRP3 inflammasome assembly, its brief molecular mechanistic activations as well as a current update on specific and non-specific NLRP3 inhibitors that could be used in NLRP3-mediated diseases. We also focused on the recently discovered epigenetic mechanisms mediated by DNA methylation, histone alterations, and microRNAs in regulating the activation and expression of NLRP3 inflammasome, which has resulted in a novel method of gaining insight into the mechanisms that modulate NLRP3 inflammasome activity and introducing potential therapeutic strategies for CNS disorders.


Asunto(s)
Inflamasomas , Enfermedades Neurodegenerativas , Humanos , Proteína con Dominio Pirina 3 de la Familia NLR , Epigénesis Genética , Inhibición Psicológica
4.
Theranostics ; 13(7): 2241-2255, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37153730

RESUMEN

Diabetic retinopathy (DR) is associated with retinal neovascularization, hard exudates, inflammation, oxidative stress and cell death, leading to vision loss. Anti-vascular endothelial growth factor (Anti-VEGF) therapy through repeated intravitreal injections is an established treatment for reducing VEGF levels in the retina for inhibiting neovascularization and leakage of hard exudates to prevent vision loss. Although anti-VEGF therapy has several clinical benefits, its monthly injection potentially causes devastating ocular complications, including trauma, intraocular hemorrhage, retinal detachment, endophthalmitis, etc. Methods: As mesenchymal stem cells (MSCs) and MSC-derived extracellular vesicles (MSC-EVs) demonstrated safety in clinical studies, we have tested the efficacy of MSC-derived small EVs (MSC-sEVs) loaded anti-VEGF drug bevacizumab in a rat model of DR. Results: The study identified a clinically significant finding that sEV loaded with bevacizumab reduces the frequency of intravitreal injection required for treating diabetic retinopathy. The sustained effect is observed from the reduced levels of VEGF, exudates and leukostasis for more than two months following intravitreal injection of sEV loaded with bevacizumab, while bevacizumab alone could maintain reduced levels for about one month. Furthermore, retinal cell death was consistently lower in this period than only bevacizumab. Conclusion: This study provided significant evidence for the prolonged benefits of sEVs as a drug delivery system. Also, EV-mediated drug delivery systems could be considered for clinical application of retinal diseases as they maintain vitreous clarity in the light path due to their composition being similar to cells.


Asunto(s)
Diabetes Mellitus , Retinopatía Diabética , Vesículas Extracelulares , Animales , Ratas , Bevacizumab/uso terapéutico , Inyecciones Intravítreas , Retinopatía Diabética/tratamiento farmacológico , Factor A de Crecimiento Endotelial Vascular , Inhibidores de la Angiogénesis , Anticuerpos Monoclonales Humanizados , Diabetes Mellitus/tratamiento farmacológico
5.
J Cell Commun Signal ; 17(3): 673-688, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36280629

RESUMEN

INTRODUCTION: One of the most common problems of diabetes are diabetic foot ulcers (DFUs). According to National Institute for Health, initial management of DFUs can decrease the complication of limb amputations and can improve the patient's quality of life. DFU treatment can be optimized with the help of multidisciplinary approach. Based on many studies, control of glucose levels in blood, antioxidant activity, reduction in cytokine levels, re-epithelialization, collagen formation, migration of fibroblasts are major phases involved in managing DFU. Dehydrozingerone (DHZ), has been known for its anti-inflammatory, antioxidant and wound healing properties. METHODOLOGY: Three months high-fat diet and low dose of streptozotocin-induced type-II diabetic foot ulcer model was used to evaluate the effectiveness of dehydrozingerone. DHZ was given orally to rats for 15 days post wounding. TNF-α, IL-1ß and antioxidant parameters like lipid peroxidation, glutathione reductase were estimated. Immunoblotting was done to investigate the effect of DHZ on the expression of ERK, JNK, HSP-27, P38, SIRT-1, NFκB, SMA, VEGF and MMP-9 in skin tissue. Histopathology was performed for analyzing DHZ effect on migration of fibroblasts, formation of epithelium, granulation tissue formation, angiogenesis and collagen formation. RESULTS: DHZ decreased the levels of malondialdehyde, TNF-α, IL-1ß and increased glutathione levels in wound tissue. Western blotting results suggested that DHZ activated ERK1/2/JNK/p38 signaling, increased expression of HSP-27, SIRT-1, VEGF, SMA thus facilitating the migration and proliferation of fibroblasts, angiogenesis and decreased inflammation. Masson Trichrome & histopathology showed an increase in collagen, epithelial and granulation tissue formation. CONCLUSION: DHZ significantly accelerates the healing of diabetic foot ulcers in high fat diet fed plus low dose streptozotocin induced type-II diabetic Wistar rats.

6.
3 Biotech ; 12(7): 147, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35720958

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is one of the major hepatic metabolic disorders that occurs because of the accumulation of lipids in hepatocytes in the form of free fatty acids (FFA) and triglycerides (TG) which become non-alcoholic steatohepatitis (NASH). NOTCH-1 receptors act as novel targets for the development of NAFLD/NASH, where overexpression of NOTCH-1 receptor alters the lipid metabolism in hepatocytes leading to NAFLD. SIRT-1 deacetylates the NOTCH-1 receptor and inhibits NAFLD. Hence, computer-aided drug design (CADD) was used to check the SIRT-1 activation ability of cinnamic sulfonyl hydroxamate derivatives (NMJ 1-8), resveratrol, and vorinostat. SIRT-1 (PDB ID: 5BTR) was docked with eight hydroxamate derivatives and vorinostat using Schrödinger software. Based on binding energy obtained (- 26.31 to - 47.34 kcal/mol), vorinostat, NMJ-2, NMJ-3, NMJ-5 were selected for induced-fit docking (IFD) and results were within - 750.70 to - 753.22 kcal/mol. Qikprop tool was used to analyse the pre pharmacokinetic parameters (ADME analysis) of all hydroxamate compounds. As observed in the molecular dynamic (MD) study, NMJ-2, NMJ-3 were showing acceptable results for activation of SIRT-1. Based on these predictions, in-vivo studies were conducted in CF1 mice, where NMJ-3 showed significant (p < 0.05) changes in lipid profile and anti-oxidant parameters (Catalase, SOD, GSH, nitrite, and LPO) and plasma insulin levels. NMJ-3 treatment also reduced inflammation, fibrosis, and necrosis in liver samples.

7.
Mol Divers ; 26(5): 2793-2811, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35146638

RESUMEN

Wnt signaling pathway is an evolutionarily conserved pathway responsible for neurogenesis, axon outgrowth, neuronal polarity, synapse formation, and maintenance. Downregulation of Wnt signaling has been found in patients with Alzheimer's disease (AD). Several experimental approaches to activate Wnt signaling pathway have proven to be beneficial in alleviating AD, which is one of the new therapeutic approaches for AD. The current study focuses on the computational structure-based virtual screening followed by the identification of potential phytomolecules targeting different markers of Wnt signaling like WIF1, DKK1, LRP6, GSK-3ß, and acetylcholine esterase. Initially, screening of 1924 compounds from the plant-based library of Zinc database was done for the selected five proteins using docking approach followed by MM-GBSA calculations. The top five hit molecules were identified for each protein. Based on docking score, and binding interactions, the top two hit molecules for each protein were selected as promising molecules for the molecular dynamic (MD) simulation study with the five proteins. Therefore, from this in silico based study, we report that Mangiferin could be a potential molecule targeting Wnt signaling pathway modulating the LRP6 activity, Baicalin for AChE activity, Chebulic acid for DKK1, ZINC103539689 for WIF1, and Morin for GSk-3ß protein. However, further validation of the activity is warranted based on in vivo and in vitro experiments for better understanding and strong claim. This study provides an in silico approach for the identification of modulators of the Wnt signaling pathway as a new therapeutic approach for AD.


Asunto(s)
Enfermedad de Alzheimer , Simulación de Dinámica Molecular , Acetilcolina/uso terapéutico , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Esterasas/metabolismo , Esterasas/uso terapéutico , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Humanos , Simulación del Acoplamiento Molecular , Vía de Señalización Wnt , Zinc
8.
Pharmacol Rep ; 73(5): 1273-1286, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34181212

RESUMEN

BACKGROUND: Dehydrozingerone (DHZ) is an active ingredient of Zingiber officinale and structural half analogue of curcumin. In the present study, DHZ was evaluated for monoamine oxidase (MAO) inhibitory activity in silico and antidepressant activity in vivo. METHOD: The binding affinity of DHZ with MAO-A (PDB ID: 2Z5Y) was assessed using Schrodinger's Maestro followed by free energy calculation, pharmacokinetic property prediction using Qikprop and Molecular dynamics simulation using Desmond. In vivo antidepressant activity of DHZ was evaluated on C57 BL/6 male mice using Escilatopram as the standard antidepressant. Open field test (OFT), forced swimming test (FST) and tail suspension test (TST) were used to evaluate the antidepressant effect of the drugs on days 1 and 7. Following the behavioural study, neurotransmitters (noradrenaline, dopamine and serotonin) were estimated using liquid chromatography-mass spectrometry. RESULTS: DHZ demonstrated a greater binding affinity for the MAO-A enzyme compared to moclobemide in silico. Immobility in TST and FST were significantly (p < 0.05) reduced in vivo with 100mg/kg DHZ as compared to respective controls. DHZ treatment was more effective 1 h post treatment compared to vehicle control. A significant increase in levels of neurotransmitters was observed in mice brain homogenate in response to DHZ treatment, reassuring its antidepressant-like potential. CONCLUSION: DHZ demonstrated MAO-A inhibition in silico, and the increased neurotransmitter levels in the brain in vivo were associated with an antidepressant-like effect.


Asunto(s)
Antidepresivos/química , Antidepresivos/farmacología , Estirenos/química , Estirenos/farmacología , Zingiber officinale/química , Animales , Escitalopram/uso terapéutico , Masculino , Ratones , Ratones Endogámicos C57BL , Moclobemida , Simulación del Acoplamiento Molecular , Monoaminooxidasa/genética , Monoaminooxidasa/metabolismo , Unión Proteica
9.
CNS Neurol Disord Drug Targets ; 20(10): 963-974, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33530917

RESUMEN

BACKGROUND: Dementia is a neurodegenerative disorder majorly evidenced by cognitive impairment. Although there are many types of dementia, the common underlying etiological factors in all the types are neuro-inflammation or aging induced apoptosis. ß-caryophyllene, a cannabinoid type-2 receptor agonist, has been reported to have promising neuroprotective effects in cerebral ischemia and neuro-inflammation. OBJECTIVE: In the present study, we evaluated the effects of ß-caryophyllene against animal models of dementia whose etiology mimicked neuro-inflammation and aging. METHODS: Two doses (50 and 100 mg/kg of body weight) of ß-caryophyllene given orally were tested against AlCl3-induced dementia in male Sprague Dawley (SD) rats using the Morris water maze test. Subsequently, the effect of the drug was assessed for episodic memory in female SD rats using novel object recognition task in doxorubicin-induced neuro-inflammation and chemobrain model. Moreover, its effects were evaluated in D-galactose-induced mitochondrial dysfunction leading to dementia. RESULTS: ß-caryophyllene, at both doses, showed significant improvement in memory when assessed using parameters like target quadrant entries, escape latency and path efficiency in the Morris water maze test for spatial memory. In the doxorubicin-induced chemobrain model, ß-caryophyllene at 100 mg/kg significantly elevated acetylcholinesterase and catalase levels and lowered lipid peroxidation compared to the disease control. In the novel object recognition task, ß-caryophyllene at 100 mg/kg significantly improved recognition index and discrimination index in the treated animals compared to the disease control, with a significant increase in catalase and a decrease in lipid peroxidation in both hippocampus and frontal cortex. However, in the D-galactose-induced mitochondrial dysfunction model, ß-caryophyllene failed to show positive effects when spatial memory was assessed. It also failed to improve D-galactose-induced diminished mitochondrial complex I and II activities. CONCLUSION: Hence, we conclude that ß-caryophyllene at 100 mg/kg protects against dementia induced by neuro-inflammation with no effect on neuronal aging induced by mitochondrial dysfunction.


Asunto(s)
Envejecimiento/efectos de los fármacos , Disfunción Cognitiva/metabolismo , Demencia/metabolismo , Enfermedades Mitocondriales/metabolismo , Enfermedades Neuroinflamatorias/metabolismo , Sesquiterpenos Policíclicos/farmacología , Cloruro de Aluminio/metabolismo , Animales , Modelos Animales de Enfermedad , Galactosa/metabolismo , Hipocampo/efectos de los fármacos , Peroxidación de Lípido , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Estrés Oxidativo/efectos de los fármacos , Ratas , Ratas Sprague-Dawley
10.
J Mol Struct ; 1224: 129073, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-32834116

RESUMEN

Neprilysin (NEP) is a neutral endopeptidase with diverse physiological roles in the body. NEP's role in degradation of diverse classes of peptides such as amyloid beta, natriuretic peptide, substance P, angiotensin, endothelins, etc., is associated with pathologies of alzheimer's, kidney and heart diseases, obesity, diabetes and certain malignancies. Hence, the functional inhibition of NEP in the above systems can be a good therapeutic target. In the present study, in-silico drug repurposing approach was used to identify NEP inhibitors. Molecular docking was carried out using GLIDE tool. 2934 drugs from the ZINC12 database were screened using high throughput virtual screening (HTVS) followed by standard precision (SP) and extra precision (XP) docking. Based on the XP docking score and ligand interaction, the top 8 hits were subjected to free ligand binding energy calculation, to filter out 4 hits (ZINC000000001427, ZINC000001533877, ZINC000000601283, and ZINC000003831594). Further, induced fit docking-standard precision (IFD-SP) and molecular dynamics (MD) studies were performed. The results obtained from MD studies suggest that ZINC000000601283-NEP and ZINC000003831594-NEP complexes were most stable for 20ns simulation period as compared to ZINC000001533877-NEP and ZINC000000001427-NEP complexes. Interestingly, ZINC000000601283 and ZINC000003831594 showed similarity in binding with the reported NEP inhibitor sacubitrilat. Findings from this study suggest that ZINC000000601283 and ZINC000003831594 may act as NEP inhibitors. In future studies, the role of ZINC000000601283 and ZINC000003831594 in NEP inhibition should be tested in biological systems to evaluate therapeutic effect in NEP associated pathological conditions.

11.
Med Chem ; 17(4): 380-395, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32720605

RESUMEN

BACKGROUND: Globally, over 4.3 million laboratory confirmed cases of COVID-19 have been reported from over 105 countries. No FDA approved antiviral is available for the treatment of this infection. Zhavoronkov et al., with their generative chemistry pipeline, have generated structures that can be potential novel drug-like inhibitors for COVID-19, provided they are validated. 3C-like protease (3CLP) is a homodimeric cysteine protease that is present in coronaviruses. Interestingly, 3CLP is 96.1% structurally similar between SARS-CoV and SARS-CoV-2. OBJECTIVE: To evaluate interaction of generated structures with 3CLP of SARS-CoV (RCSB PDB ID: 4MDS). METHODS: Crystal structure of human SARS-CoV with a non-covalent inhibitor with resolution: 1.598 Å was obtained and molecular docking was performed to evaluate the interaction with generated structures. The MM-GBSA and IFD-SP were performed to narrow down to the structures with better binding energy and IFD score. The ADME analysis was performed on top 5 hits and further MD simulation was employed for top 2 hits. RESULTS: In XP docking, IFD-SP and molecular dynamic simulation studies, the top 2 hits 32 and 61 showed interaction with key amino acid residue GLU166. Structure 61, also showed interaction with HIS164. These interactions of generated structure 32 and 61, with GLU166 and HIS164, indicate the binding of the selected drug within the close proximity of 3CLP. In the MD simulation, the protein- ligand complex of 4MDS and structure 61 was found to be more stable for 10ns. CONCLUSION: These identified structures can be further assessed for their antiviral activity to combat SARS-CoV and COVID-19.


Asunto(s)
Antivirales/química , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Inhibidores de Proteasas/química , SARS-CoV-2/química , Bibliotecas de Moléculas Pequeñas/química , Antivirales/metabolismo , Dominio Catalítico , Proteasas 3C de Coronavirus/química , Proteasas 3C de Coronavirus/metabolismo , Descubrimiento de Drogas , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Inhibidores de Proteasas/metabolismo , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/química , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/enzimología , SARS-CoV-2/enzimología , Bibliotecas de Moléculas Pequeñas/metabolismo , Homología Estructural de Proteína , Relación Estructura-Actividad , Especificidad por Sustrato , Termodinámica , Interfaz Usuario-Computador , Tratamiento Farmacológico de COVID-19
12.
Eur J Pharmacol ; 891: 173727, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33160935

RESUMEN

Peptidases are emerging as promising drug targets in tumour suppression. Neprilysin, also known as neutral endopeptidase, is a cell surface peptidase that degrades various peptides such as angiotensin II, endothelin I, Substance P, etc., and reduces their local concentration. Neprilysin is expressed in various tissues such as kidney, prostate, lung, breast, brain, intestine, adrenal gland, etc. The tumour-suppressor mechanisms of neprilysin include its peptidase activity that degrades mitogenic growth factors such as fibroblast growth factor-2 and insulin-like growth factors, and the protein-protein interaction of neprilysin with phosphatase and tensin homolog, focal adhesion kinase, ezrin/radixin/moesin, and phosphoinositide 3-kinase. Studies have shown that the levels of neprilysin play an important role in malignancies. NEP is downregulated in prostate, renal, lung, breast, urothelial, cervical, hepatic cancers, etc. Histone deacetylation and hypermethylation of the neprilysin promoter region are the common mechanisms involved in the downregulation of neprilysin. Downregulation of the peptidase promotes angiogenesis, cell survival and cell migration. This review presents an overview of the role of neprilysin in malignancy, the tumour suppression mechanisms of neprilysin, the epigenetic mechanisms responsible for downregulation of neprilysin, and the potential pharmacological approaches to upregulate neprilysin levels and its activity.


Asunto(s)
Neoplasias/enzimología , Neprilisina/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Antineoplásicos/uso terapéutico , Metilación de ADN , Regulación hacia Abajo , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Neprilisina/genética , Transducción de Señal , Proteínas Supresoras de Tumor/genética
13.
Neuropeptides ; 83: 102083, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32873420

RESUMEN

Spermidine is a naturally occurring endogenous polyamine synthesized from diamine putrescine. It is a well-known autophagy inducer that maintains cellular and neuronal homeostasis. Healthy brain development and function are dependent on brain polyamine concentration. Polyamines interact with the opioid system, glutamatergic signaling and neuroinflammation in the neuronal and glial compartments. Among the polyamines, spermidine is found highest in the human brain. Age-linked fluctuations in the spermidine levels may possibly contribute to the impairments in neural network and neurogenesis. Exogenously administered spermidine helps in the treatment of brain diseases. Further, current studies highlight the ability of spermidine to promote longevity by inducing autophagy. Still, the causal neuroprotective mechanism of spermidine in neuronal dysfunction remains unidentified. This review aims to summarize various neuroprotective effects of spermidine related to anti-aging/ anti-inflammatory properties and the prevention of neurotoxicity that helps in achieving beneficial effects in age-related neurological disorder. We also expose the signaling cascades modulated by spermidine which might result in therapeutic action. The present review highlights clinical studies along with in-vivo and in-vitro preclinical studies to provide a new dimension for the therapeutic potential of spermidine in neurological disorders.


Asunto(s)
Autofagia/efectos de los fármacos , Enfermedades del Sistema Nervioso/tratamiento farmacológico , Fármacos Neuroprotectores/uso terapéutico , Espermidina/uso terapéutico , Animales , Encéfalo/efectos de los fármacos , Humanos , Fármacos Neuroprotectores/farmacología , Espermidina/farmacología
14.
Toxicol Mech Methods ; 30(2): 88-99, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31532266

RESUMEN

Neprilysin (NEP) is an endogenously induced peptidase for modulating production and degradation of various peptides in humans. It is most abundantly present in kidney and regulates the intrinsic renal homeostatic mechanism. Recently, drugs inhibiting NEP have been approved for the use in heart failure. In the context of increased prevalence of ischemia associated renal failure, NEP could be an attractive target for treating kidney failure. In the kidney, targeting NEP may possess potential benefits as well as adverse consequences. The unfavorable outcomes of NEP are mainly attributed to the degradation of the natriuretic peptides (NPs). NPs are involved in the inhibition of the renin-angiotensin-aldosterone system (RAAS) and activation of the sympathetic system contributing to the tubular and glomerular injury. In contrary, NEP exerts the beneficial effect by converting angiotensin-1 (Ang I) to angiotensin-(1-7) (Ang-(1-7)), thus activating MAS-related G-protein coupled receptor. MAS receptor antagonizes angiotensin type I receptor (AT-1R), reduces reactive oxygen species (ROS) and inflammation, thus ameliorating renal injury. However, the association of NEP with complex cascades of renal ischemia remains vague. Therefore, there is a need to evaluate the putative mechanism of NEP and its overlap with other signaling cascades in conditions of renal ischemia.


Asunto(s)
Isquemia/enzimología , Riñón/enzimología , Neprilisina/antagonistas & inhibidores , Insuficiencia Renal/enzimología , Angiotensina I/metabolismo , Animales , Humanos , Isquemia/complicaciones , Riñón/irrigación sanguínea , Péptidos Natriuréticos/metabolismo , Fragmentos de Péptidos/metabolismo , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Insuficiencia Renal/etiología , Sistema Renina-Angiotensina/fisiología , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...