Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Sci Process Impacts ; 23(11): 1706-1717, 2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34643206

RESUMEN

We spend most of our time in built environments. The cumulative exposure to particulate matter (PM) occurring in these built environments can potentially be comparable to or even exceed that occurring outdoors. Therefore, it is critical to understand the sources, dynamics, and fate of PM in built environments. This work focuses on aerosol dynamics modeling (including coagulation, deposition, and exfiltration) of sub-500 nm particles measured inside a test house during the HOMEChem campaign while performing prescribed cooking activities. Deposition characteristics of the test house, emission rates and factors, and the fate of particles are presented. Number emission rates calculated for two different heat sources (stove and hot plate) and the various meals cooked on them were highest for sub-10 nm particles. Coagulation and deposition contributed comparably to the particle number concentration decay. Most of the PM (90% number-based and 70% mass-based) deposited within the house while the remaining fraction left the test house volume via exfiltration. Simulation results show that while increased air exchange rate reduces indoor PM mass concentration, it can lead to increased number concentration. An increase from 0.5 to 5 ACH (comparable to the equivalent air change rate from running a well-dimensioned portable air cleaner) would result in a 70% reduction in PM mass-based exposure while a further increase from 5 to 20 ACH would only result in an additional 21% reduction.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Aerosoles , Contaminantes Atmosféricos/análisis , Contaminación del Aire Interior/análisis , Monitoreo del Ambiente , Tamaño de la Partícula , Material Particulado/análisis
2.
Environ Sci Process Impacts ; 23(10): 1476-1487, 2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34523653

RESUMEN

Particle emissions from cooking are a major contributor to residential indoor air pollution and could also contribute to ambient concentrations. An important constituent of these emissions is light-absorbing carbon, including black carbon (BC) and brown carbon (BrC). This work characterizes the contributions of indoor and outdoor sources of BC and BrC to the indoor environment by concurrently measuring real-time concentrations of these air pollutants indoors and outdoors during the month-long HOMEChem study. The median indoor-to-outdoor ratios of BC and BrC during the periods of no activity inside the test house were 0.6 and 0.7, respectively. The absorption Ångström exponent was used to characterize light-absorbing particle emissions during different activities and ranged from 1.1 to 2.7 throughout the campaign, with the highest value (indicative of BrC-dominated emissions) observed during the preparation of a simulated Thanksgiving Day holiday style meal. An indoor BC exposure assessment shows that exposure for an occupant present in the kitchen area was ∼4 times higher during Thanksgiving Day experiments (primarily due to candle burning) when compared to the background conditions.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Contaminantes Atmosféricos/análisis , Contaminación del Aire Interior/análisis , Carbono/análisis , Culinaria , Monitoreo del Ambiente , Tamaño de la Partícula , Material Particulado/análisis , Hollín/análisis
3.
Indoor Air ; 31(1): 88-98, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32779288

RESUMEN

Inhalation of particulate matter is associated with adverse health outcomes. The fluorescent portion of supermicron particulate matter has been used as a proxy for bioaerosols. The sources and emission rates of fluorescent particles in residential environments are not well-understood. Using an ultraviolet aerodynamic particle sizer (UVAPS), emissions of total and fluorescent supermicron particles from common human activities were investigated during the HOMEChem campaign, a test-house investigation of the chemistry of indoor environments. Human occupancy and activities, including cooking and mopping, were found to be considerable sources of indoor supermicron fluorescent particles, which enhanced the indoor particle concentrations by two orders of magnitude above baseline levels. The estimated total (fluorescent) mass emission rates for the activities tested were in the range of 4-30 (1-11) mg per person meal for cooking and 0.1-4.9 (0.05-4.7) mg/h for occupancy and mopping. Model calculations indicate that, once released, the dominant fate of coarse particles (2.5-10 micrometer in diameter) was deposition onto indoor surfaces, allowing for the possibility of subsequent resuspension and consequent exposures over durations much longer than the ventilation time scale. Indoor coarse particle deposition would also contribute to soiling of indoor surfaces.


Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminación del Aire Interior/análisis , Material Particulado/análisis , Contaminación del Aire Interior/estadística & datos numéricos , Culinaria , Monitoreo del Ambiente , Vivienda , Humanos , Tamaño de la Partícula
4.
Environ Sci Technol ; 54(12): 7107-7116, 2020 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-32391692

RESUMEN

It is important to improve our understanding of exposure to particulate matter (PM) in residences because of associated health risks. The HOMEChem campaign was conducted to investigate indoor chemistry in a manufactured test house during prescribed everyday activities, such as cooking, cleaning, and opening doors and windows. This paper focuses on measured size distributions of PM (0.001-20 µm), along with estimated exposures and respiratory-tract deposition. Number concentrations were highest for sub-10 nm particles during cooking using a propane-fueled stovetop. During some cooking activities, calculated PM2.5 mass concentrations (assuming a density of 1 g cm-3) exceeded 250 µg m-3, and exposure during the postcooking decay phase exceeded that of the cooking period itself. The modeled PM respiratory deposition for an adult residing in the test house kitchen for 12 h varied from 7 µg on a day with no indoor activities to 68 µg during a simulated day (including breakfast, lunch, and dinner preparation interspersed by cleaning activities) and rose to 149 µg during a simulated Thanksgiving day.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Adulto , Contaminantes Atmosféricos/análisis , Contaminación del Aire Interior/análisis , Culinaria , Monitoreo del Ambiente , Vivienda , Humanos , Tamaño de la Partícula , Material Particulado/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA