Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microscopy (Oxf) ; 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38702889

RESUMEN

We investigate a one-dimensional plasmonic crystal (1D PlC) using momentum-resolved electron energy loss spectroscopy (EELS) and cathodoluminescence (CL) techniques, which are complementary in terms of available optical information. The PlC sample is fabricated from large aluminum grains through the focused ion beam (FIB) method. This approach allows curving nanostructures with high crystallinity, providing platforms for detailed analysis of plasmonic nanostructures using both EELS and CL. The momentum-resolved EELS visualizes dispersion curves outside the light cone, confirming the existence of the surface plasmon polaritons (SPP) and local modes, while the momentum-resolved CL mapping analysis identified these SPP and local modes. Such synergetic approach of two electron-beam techniques offers full insights into both radiative and non-radiative optical properties in plasmonic or photonic structures.

2.
Nano Lett ; 24(13): 3971-3977, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38501652

RESUMEN

Time-resolved or time-correlation measurements using cathodoluminescence (CL) reveal the electronic and optical properties of semiconductors, such as their carrier lifetimes, at the nanoscale. However, halide perovskites, which are promising optoelectronic materials, exhibit significantly different decay dynamics in their CL and photoluminescence (PL). We conducted time-correlation CL measurements of CsPbBr3 using Hanbury Brown-Twiss interferometry and compared them with time-resolved PL. The measured CL decay time was on the order of subnanoseconds and was faster than PL decay at an excited carrier density of 2.1 × 1018 cm-3. Our experiment and analytical model revealed the CL dynamics induced by individual electron incidences, which are characterized by highly localized carrier generation followed by a rapid decrease in carrier density due to diffusion. This carrier diffusion can play a dominant role in the CL decay time for undoped semiconductors, in general, when the diffusion dynamics are faster than the carrier recombination.

3.
Nano Lett ; 24(3): 929-934, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38173237

RESUMEN

Control of the angular momentum of light is a key technology for next-generation nano-optical devices and optical communications, including quantum communication and encoding. We propose an approach to controllably generate circularly polarized light from a circular hole in a metal film using an electron beam by coherently exciting transition radiation and light scattering from the hole through surface plasmon polaritons. The circularly polarized light generation is confirmed by fully polarimetric four-dimensional cathodoluminescence mapping, where angle-resolved spectra are simultaneously obtained. The obtained intensity and Stokes maps show clear interference fringes as well as almost fully circularly polarized light generation with controllable parities by the electron beam position. By applying this approach to a three-hole system, a vortex field with a phase singularity is visualized in the middle of three holes.

4.
Nanoscale Adv ; 5(18): 5115-5121, 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37705802

RESUMEN

van der Waals (vdW) layered materials have attracted much attention because their physical properties can be controlled by varying the twist angle and layer composition. However, such twisted vdW assemblies are often prepared using mechanically exfoliated monolayer flakes with unintended shapes through a time-consuming search for such materials. Here, we report the rapid and dry fabrication of twisted multilayers using chemical vapor deposition (CVD) grown transition metal chalcogenide (TMDC) monolayers. By improving the adhesion of an acrylic resin stamp to the monolayers, the single crystals of various TMDC monolayers with desired grain size and density on a SiO2/Si substrate can be efficiently picked up. The present dry transfer process demonstrates the one-step fabrication of more than 100 twisted bilayers and the sequential stacking of a twisted 10-layer MoS2 single crystal. Furthermore, we also fabricated hBN-encapsulated TMDC monolayers and various twisted bilayers including MoSe2/MoS2, MoSe2/WSe2, and MoSe2/WS2. The interlayer interaction and quality of dry-transferred, CVD-grown TMDCs were characterized by using photoluminescence (PL), cathodoluminescence (CL) spectroscopy, and cross-sectional electron microscopy. The prominent PL peaks of interlayer excitons can be observed for MoSe2/MoS2 and MoSe2/WSe2 with small twist angles at room temperature. We also found that the optical spectra were locally modulated due to nanosized bubbles, which are formed by the presence of interface carbon impurities. The present findings indicate the widely applicable potential of the present method and enable an efficient search of the emergent optical and electrical properties of TMDC-based vdW heterostructures.

5.
Ultramicroscopy ; 251: 113759, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37245285

RESUMEN

We developed a novel light optics system installed in a scanning transmission electron microscope (STEM) to introduce a focused light accurately adjusted at the electron beam irradiation position using a parabolic mirror. With a parabolic mirror covering both the upper and lower sides of the sample, the position and focus of the light beam can be evaluated by imaging the angular distribution of the transmitted light. By comparing the light image and the electron micrograph, the irradiation positions of the electron beam and the laser beam can be accurately adjusted to each other. The size of the focused light was confirmed to be within a few microns from the light Ronchigram, which is consistent with the simulated light spot size. The spot size and position alignment were further confirmed by laser-ablating only a targeted polystyrene particle without damaging the surrounding particles. When using a halogen lamp as the light source, this system allows investigating optical spectra in comparison with cathodoluminescence (CL) spectra at exactly the same location.

6.
ACS Photonics ; 10(5): 1434-1445, 2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37215315

RESUMEN

A spherical dielectric particle can sustain the so-called whispering-gallery modes (WGMs), which can be regarded as circulating electromagnetic waves, resulting in the spatial confinement of light inside the particle. Despite the wide adoption of optical WGMs as a major light confinement mechanism in salient practical applications, direct imaging of the mode fields is still lacking and only partially addressed by simple photography and simulation work. The present study comprehensively covers this research gap by demonstrating the nanoscale optical-field visualization of self-interference of light extracted from excited modes through experimentally obtained photon maps that directly portray the field distributions of the excited eigenmodes. To selectively choose the specific modes at a given light emission detection angle and resonance wavelength, we use cathodoluminescence-based scanning transmission electron microscopy supplemented with angle-, polarization-, and wavelength-resolved capabilities. Equipped with semi-analytical simulation tools, the internal field distributions of the whispering-gallery modes reveal that radiation emitted by a spherical resonator at a given resonance frequency is composed of the interference between multiple modes, with one or more of them being comparatively dominant, leading to a resulting distribution featuring complex patterns that explicitly depend on the detection angle and polarization. Direct visualization of the internal fields inside resonators enables a comprehensive understanding of WGMs that can shed light on the design of nanophotonic applications.

7.
ACS Nano ; 16(12): 21462-21470, 2022 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-36414014

RESUMEN

Free-electron-based spectroscopies can reveal the nanoscale optical properties of semiconductor materials and nanophotonic devices with a spatial resolution far beyond the diffraction limit of light. However, the retrieved spatial information is constrained to the excitation space defined by the electron beam position, while information on the delocalization associated with the spatial extension of the probed optical modes in the specimen has so far been missing, despite its relevance in ruling the optical properties of nanostructures. In this study, we demonstrate a cathodoluminescence method that can access both excitation and emission spaces at the nanoscale, illustrating the power of such a simultaneous excitation and emission mapping technique by revealing a subwavelength emission position modulation as well as by visualizing electromagnetic energy transport in nanoplasmonic systems. Besides the fundamental interest of these results, our technique grants us access into previously inaccessible nanoscale optical properties.

8.
ACS Appl Mater Interfaces ; 14(30): 35020-35026, 2022 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-35857029

RESUMEN

Metallic nanoparticles with localized surface plasmon resonance have suitable optical properties for various applications such as optical filters, efficient photocatalysts, and high-sensitivity sensors. Phase-separated plasmonic nanoparticles with heterogeneous metastructures exhibit unique resonance features with separate optical field enhancements in each phase and hot electron transfer across the interface. Hence, interface engineering is crucial, particularly for catalyst applications. In this study, we investigated the evolution of the interface at high temperatures during nanoparticle formation using the dewetting method. We selected a Ag-Cu binary alloy system as a representative case and observed the nanoparticles via in situ transmission electron microscopy using a dedicated specimen heating holder. In situ elemental mapping revealed that the initial as-deposited film, which was composed of core-shell structures with Ag cores and Cu shells, converted into phase-separated Janus nanoparticles through marbled structures. A major structural change was observed at approximately 200 °C, which was in agreement with optical measurements. These results confirmed that the optical properties and metastructures of the phase-separated nanoparticles could be tuned by selecting the appropriate temperature and duration of the heat treatment.

9.
J Phys Chem Lett ; 13(25): 5824-5830, 2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35726976

RESUMEN

Gold nanoparticles that are partially or fully covered by metal oxide shells provide superior functionality and stability for catalytic and plasmonic applications. Yet, facile methods for controlled fabrication of thin oxide layers on metal nanoparticles are lacking. Here, we report an easy method to reliably engineer thin Ga2O3 shells on Au nanoparticles, based on liquid-phase chemical oxidation of Au-Ga alloy nanoparticles. We demonstrate that, with this technique, laminar and ultrathin Ga2O3 shells can be grown with ranging thickness from sub- to several monolayers. We show how the localized surface plasmon resonance can be used to understand the reaction process and quantitatively monitor the Ga2O3 shell growth. Finally, we demonstrate that the Ga2O3 coating prevents sintering of the Au nanoparticles, providing thermal stability to at least 250 °C. This approach, building on dealloying of bimetallic nanoparticles by the solution-phase oxidation, promises a general technique for achieving controlled metal/oxide core/shell nanoparticles.

10.
Biosensors (Basel) ; 12(3)2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35323419

RESUMEN

Nanodiamonds have emerged as promising agents for sensing and imaging due to their exceptional photostability and sensitivity to the local nanoscale environment. Here, we introduce a hybrid system composed of a nanodiamond containing nitrogen-vacancy center that is paired to a gold nanoparticle via DNA hybridization. Using multiphoton optical studies, we demonstrate that the harmonic mode emission generated in gold nanoparticles induces a coupled fluorescence emission in nanodiamonds. We show that the flickering of harmonic emission in gold nanoparticles directly influences the nanodiamonds' emissions, resulting in stochastic blinking. By utilizing the stochastic emission fluctuations, we present a proof-of-principle experiment to demonstrate the potential application of the hybrid system for super-resolution microscopy. The introduced system may find applications in intracellular biosensing and bioimaging due to the DNA-based coupling mechanism and also the attractive characteristics of harmonic generation, such as low power, low background and tissue transparency.


Asunto(s)
Nanopartículas del Metal , Nanodiamantes , Oro , Microscopía , Nitrógeno
11.
Phys Chem Chem Phys ; 24(7): 4588-4594, 2022 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-35132976

RESUMEN

Surface plasmon resonance (SPR) is a highly useful technique in biology and is gradually becoming useful also for materials science. However, measurements to date have been performed almost exclusively on gold, which limits the possibility to probe chemical modifications of other metals. In this work we show that 20 nm Pd and Pt films work "fairly well" for quantitative SPR sensing of organic films despite the high light absorption. In the interval between total reflection and the SPR angle, high intensity changes occur when a film is formed on the surface. Fresnel models accurately describe the full angular spectra and our data analysis provides good resolution of surface coverage in air (a few ng cm-2). Overall, the Pd sensors behave quite similarly to 50 nm gold in terms of sensitivity and field extension, although the noise level in real-time measurements is ∼5 times higher. The Pt sensors exhibit a longer extension of the evanescent field and ∼10 times higher noise compared to gold. Yet, formation of organic layers a few nm in thickness can still be monitored in real-time. As a model system, we use thiolated poly(ethylene glycol) to make Pd and Pt protein repelling. Our findings show how SPR can be used for studying chemical modifications of two metals that are important in several contexts, for instance within heterogeneous catalysis. We emphasize the advantages of simple sample preparation and accurate quantitative analysis in the planar geometry by Fresnel models.


Asunto(s)
Platino (Metal) , Resonancia por Plasmón de Superficie , Oro , Paladio , Resonancia por Plasmón de Superficie/métodos
12.
Opt Express ; 29(22): 34951-34961, 2021 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-34808942

RESUMEN

Transverse spin angular momentum of light is a key concept in recent nanophotonics to realize unidirectional light transport in waveguides by spin-momentum locking. Herein we theoretically propose subwavelength nanoparticle chain waveguides that efficiently sort optical spins with engineerable spin density distributions. By arranging high-refractive-index nanospheres or nanodisks of different sizes in a zigzag manner, directional optical spin propagation is realized. The origin of efficient spin transport is revealed by analyzing the dispersion relation and spin angular momentum density distributions, being attributed to guided modes that possess transverse spin angular momenta. In contrast to conventional waveguides, the proposed asymmetric waveguide can spatially separate up- and down-spins and locate one parity inside and the other outside the structure. Moreover, robustness against bending the waveguide and its application as an optical spin sorter are presented. Compared to previous reports on spatial engineering of local spins in photonic crystal waveguides, we achieved miniaturization of the entire footprint down to the subwavelength scale.

13.
Materials (Basel) ; 14(11)2021 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-34200148

RESUMEN

To enhance the mechanical properties (e.g., strength and elongation) of the face-centered cubic (fcc) α-phase in the Au-Cu-Al system, this study focused on the introduction of the martensite phase (doubled B19 (DB19) crystal structure of Au2CuAl) via the manipulation of alloy compositions. Fundamental evaluations, such as microstructure observations, phase identifications, thermal analysis, tensile behavior examinations, and reflectance analysis, have been conducted. The presence of fcc annealing twins was observed in both the optical microscope (OM) and the scanning electron microscope (SEM) images. Both strength and elongation of the alloys were greatly promoted while the DB19 martensite phase was introduced into the alloys. Amongst all the prepared specimens, the 47Au41Cu12Al and the 44Au44Cu12Al alloys performed the optimized mechanical properties. The enhancement of strength and ductility in these two alloys was achieved while the stress plateau was observed during the tensile deformation. A plot of the ultimate tensile strength (UTS) against fracture strain was constructed to illustrate the effects of the introduction of the DB19 martensite phase on the mechanical properties of the alloys. Regardless of the manipulation of the alloy compositions and the introduction of the DB19 martensite phase, the reflectance stayed almost identical to pure Au.

14.
Nano Lett ; 21(15): 6556-6562, 2021 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-34314178

RESUMEN

Valley polarization has recently been adopted in optics, offering robust waveguiding and angular momentum sorting. The success of valley systems in photonic crystals suggests a plasmonic counterpart that can merge topological photonics and topological condensed matter systems, for instance, two-dimensional materials with the enhanced light-matter interaction. However, a valley plasmonic waveguide with a sufficient propagation distance in the near-infrared (NIR) or visible spectral range has so far not been realized due to ohmic loss inside the metal. Here, we employ gap surface plasmons for high index contrasting and realize a wide-bandgap valley plasmonic crystal, allowing waveguiding in the NIR-visible range. The edge mode with a propagation distance of 5.3 µm in the range of 1.31-1.36 eV is experimentally confirmed by visualizing the field distributions with a scanning transmission electron microscope cathodoluminescence technique, suggesting a practical platform for transferring angular momentum between photons and carriers in mesoscopic active devices.

15.
ACS Nano ; 15(2): 2219-2228, 2021 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-32845613

RESUMEN

Circularly polarized light (CPL) is currently receiving much attention as a key ingredient for next-generation information technologies, such as quantum communication and encryption. CPL photon generation used in those applications is commonly realized by coupling achiral optical quantum emitters to chiral nanoantennas. Here, we explore a different strategy consisting in exciting a nanosphere-the ultimate symmetric structure-to produce CPL emission along an arbitrary direction. Specifically, we demonstrate chiral emission from a silicon nanosphere induced by an electron beam based on two different strategies: either shifting the relative phase of degenerate orthogonal dipole modes or interfering electric and magnetic modes. We prove these concepts both theoretically and experimentally by visualizing the phase and polarization using a fully polarimetric four-dimensional cathodoluminescence method. Besides their fundamental interest, our results support the use of free-electron-induced light emission from spherically symmetric systems as a versatile platform for the generation of chiral light with on-demand control over the phase and degree of polarization.

16.
J Chem Phys ; 152(7): 074707, 2020 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-32087626

RESUMEN

Plasmonic nanoholes have attracted significant attention among nanoplasmonic devices, especially as biosensing platforms, where nanohole arrays can efficiently enhance and confine the electromagnetic field through surface plasmon polaritons, providing a sensitive detection. In nanohole arrays, the optical resonances are typically determined by the inter-hole distance or periodicity with respect to the surface plasmon wavelength. However, for short-range ordered (SRO) arrays, the inter-hole distance varies locally, so the plasmon resonance changes. In this study, we investigate the local resonance of SRO nanoholes using a cathodoluminescence technique and compare it with hexagonally ordered nanoholes. The cathodoluminescence photon maps and resonance peak analysis reveal that the electric fields are confined at the edges of holes and that their resonances are determined by inter-hole distances as well as by their distributions. This demonstrates the Anderson localization of the electromagnetic waves showing locally enhanced electromagnetic local density of states in SRO nanoholes.

17.
J Chem Phys ; 152(2): 024705, 2020 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-31941311

RESUMEN

Short range ordered (SRO) plasmonic nanohole arrays have a distinct surface plasmon polariton resonance in the visible region and exhibit an excellent sensing capability toward changes in the surrounding refractive index. While SRO and perfectly ordered plasmonic hole arrays have similar sensing properties, SRO arrays have clear advantages in fabrication, simplicity, and scalability. In this study, we use SRO gold nanoholes, which are subjected to pressure and temperature cycles, for vacuum and temperature sensing. The response of the transmission spectra to pressure changes in the range 10-3-105 Pa and temperature scans in the range 20-400 °C was recorded. Upon pressure cycling, a reversible response was observed. Upon initial temperature annealing, an irreversible blue shift in the resonance dip position was observed. Upon further temperature cycling, the resonance dip position shifts reversibly, with a notable red shift upon temperature increase. The results are discussed and interpreted based on possible molecular adsorption/desorption upon pressure cycling and in terms of the gold film's recrystallization, thermal expansion, and free electron density variations.

18.
Nano Lett ; 20(1): 592-598, 2020 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-31855432

RESUMEN

Nanoscale gaps between metals can strongly confine electromagnetic fields that enable efficient electromagnetic energy conversion and coupling to nanophotonic structures. In particular, the gap formed by depositing a metallic particle on a metallic substrate produces coupling of localized particle plasmons to propagating surface plasmon polaritons (SPPs). Understanding and controlling the phase of such coupling is essential for the design of devices relying on nanoparticles coupled through SPPs. Here we demonstrate the experimental visualization of the phase associated with the plasmonic field of metallic particle-surface composites through nanoscopically and spectroscopically resolved cathodoluminescence using a scanning transmission electron microscope. Specifically, we study the interference between the substrate transition radiation and the field resulting from out-coupling of SPP excitation, therefore giving rise to angle-, polarization-, and energy-dependent photon emission fringe patterns from which we extract phase information. Our methods should be readily applicable to more complex nanostructures, thus providing direct experimental insight into nanoplasmonic near-fields with potential applications in improving plasmon-based devices.

19.
Phys Rev Lett ; 123(15): 150801, 2019 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-31702296

RESUMEN

High-voltage transmission electron microscopes (HVTEMs), which can visualize internal structures of micron thick samples, intrinsically have large instrument sizes because of the static voltage isolation. In this Letter, we develop a compact HVTEM, employing a linear accelerator, a subpicosecond beam chopper, and a linear decelerator. 100 kV electrons initially accelerated by a static field are accelerated at radio frequency (rf) up to 500 kV, transmitting through the sample and finally rf decelerated down to 200 kV to be imaged through a 200 kV energy filter. 500 kV imaging, as well as subnanometer resolution at 200 kV, have been demonstrated.

20.
Nanoscale Adv ; 1(11): 4282-4289, 2019 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-36134417

RESUMEN

Solid state nanopores are central structures for many applications. To date, much effort has been spent on controlled fabrication of single nanopores, while relatively little work has focused on large scale fabrication of arrays of nanopores. In this work we show wafer-scale fabrication of plasmonic nanopores in 50 nm thick silicon nitride membranes with one or two 30 nm gold films, using electron beam lithography with a negative resist or a new version of colloidal lithography. Both approaches offer good control of pore diameter (even below 100 nm) and with high yield (>90%) of intact membranes. Colloidal lithography has the advantage of parallel patterning without expensive equipment. Despite its serial nature, electron beam lithography provides high throughput and can make arbitrary array patterns. Importantly, both methods prevent metal from ending up on the membrane pore sidewalls. The new fabrication methods make it possible to compare the optical properties of structurally identical plasmonic nanopore arrays with either long-range order (e-beam) or short-range order (colloidal). The resonance features in the extinction spectrum are very similar for both structures when the pitch is the same as the characteristic spacing in the self-assembled colloidal pattern. Long-range ordering slightly enhances the magnitude of the extinction maximum and blueshift the transmission maximum by tens of nm. Upon reducing the diameter in long-range ordered arrays, the resonance is reduced in magnitude and the transmission maximum is further blue shifted, just like for short-range ordered arrays. These effects are well explained by interpreting the spectra as Fano interference between the grating-type excitation of propagating surface plasmons and the broad transmission via individual pores in the metal film. Furthermore, we find that only the short-range ordered arrays scatter light, which we attribute to the highly limited effective period in the short-range ordered system and the corresponding lack of coherent suppression of scattering by interference effects.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...