Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell ; 186(5): 1013-1025.e24, 2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36827973

RESUMEN

The emergence of drug-resistant tuberculosis has created an urgent need for new anti-tubercular agents. Here, we report the discovery of a series of macrolides called sequanamycins with outstanding in vitro and in vivo activity against Mycobacterium tuberculosis (Mtb). Sequanamycins are bacterial ribosome inhibitors that interact with the ribosome in a similar manner to classic macrolides like erythromycin and clarithromycin, but with binding characteristics that allow them to overcome the inherent macrolide resistance of Mtb. Structures of the ribosome with bound inhibitors were used to optimize sequanamycin to produce the advanced lead compound SEQ-9. SEQ-9 was efficacious in mouse models of acute and chronic TB as a single agent, and it demonstrated bactericidal activity in a murine TB infection model in combination with other TB drugs. These results support further investigation of this series as TB clinical candidates, with the potential for use in new regimens against drug-susceptible and drug-resistant TB.


Asunto(s)
Antituberculosos , Mycobacterium tuberculosis , Animales , Ratones , Antituberculosos/farmacología , Macrólidos , Farmacorresistencia Bacteriana , Claritromicina
2.
Front Immunol ; 12: 668060, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34276658

RESUMEN

Mycobacterium tuberculosis (Mtb), the etiological agent of tuberculosis, kills 1.5 to 1.7 million people every year. Macrophages are Mtb's main host cells and their inflammatory response is an essential component of the host defense against Mtb. However, Mtb is able to circumvent the macrophages' defenses by triggering an inappropriate inflammatory response. The ability of Mtb to hinder phagolysosome maturation and acidification, and to escape the phagosome into the cytosol, is closely linked to its virulence. The modulation of the host inflammatory response relies on Mtb virulence factors, but remains poorly studied. Understanding macrophage interactions with Mtb is crucial to develop strategies to control tuberculosis. The present study aims to determine the inflammatory response transcriptome and miRNome of human macrophages infected with the virulent H37Rv Mtb strain, to identify macrophage genetic networks specifically modulated by Mtb virulence. Using human macrophages infected with two different live strains of mycobacteria (live or heat-inactivated Mtb H37Rv and M. marinum), we quantified and analyzed 184 inflammatory mRNAs and 765 micro(mi)RNAs. Transcripts and miRNAs differently modulated by H37Rv in comparison with the two other conditions were analyzed using in silico approaches. We identified 30 host inflammatory response genes and 37 miRNAs specific for H37Rv virulence, and highlight evidence suggesting that Mtb intracellular-linked virulence depends on the inhibition of IL-1ß-dependent pro-inflammatory response, the repression of apoptosis and the delay of the recruitment and activation of adaptive immune cells. Our findings provide new potential targets for the development of macrophage-based therapeutic strategies against TB.


Asunto(s)
Citocinas/metabolismo , Mediadores de Inflamación/metabolismo , Pulmón/microbiología , Macrófagos/microbiología , Mycobacterium tuberculosis/patogenicidad , Tuberculosis/microbiología , Inmunidad Adaptativa , Apoptosis , Citocinas/genética , Regulación de la Expresión Génica , Interacciones Huésped-Patógeno , Humanos , Pulmón/inmunología , Pulmón/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Infecciones por Mycobacterium no Tuberculosas/inmunología , Infecciones por Mycobacterium no Tuberculosas/metabolismo , Infecciones por Mycobacterium no Tuberculosas/microbiología , Mycobacterium marinum/inmunología , Mycobacterium marinum/patogenicidad , Mycobacterium tuberculosis/inmunología , Transducción de Señal , Células THP-1 , Transcriptoma , Tuberculosis/genética , Tuberculosis/inmunología , Tuberculosis/metabolismo , Virulencia
4.
mBio ; 10(4)2019 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-31289182

RESUMEN

A defining characteristic of treating tuberculosis is the need for prolonged administration of multiple drugs. This may be due in part to subpopulations of slowly replicating or nonreplicating Mycobacterium tuberculosis bacilli exhibiting phenotypic tolerance to most antibiotics in the standard treatment regimen. Confounding this problem is the increasing incidence of heritable multidrug-resistant M. tuberculosis A search for new antimycobacterial chemical scaffolds that can kill phenotypically drug-tolerant mycobacteria uncovered tricyclic 4-hydroxyquinolines and a barbituric acid derivative with mycobactericidal activity against both replicating and nonreplicating M. tuberculosis Both families of compounds depleted M. tuberculosis of intrabacterial magnesium. Complete or partial resistance to both chemotypes arose from mutations in the putative mycobacterial Mg2+/Co2+ ion channel, CorA. Excess extracellular Mg2+, but not other divalent cations, diminished the compounds' cidality against replicating M. tuberculosis These findings establish depletion of intrabacterial magnesium as an antimicrobial mechanism of action and show that M. tuberculosis magnesium homeostasis is vulnerable to disruption by structurally diverse, nonchelating, drug-like compounds.IMPORTANCE Antimycobacterial agents might shorten the course of treatment by reducing the number of phenotypically tolerant bacteria if they could kill M. tuberculosis in diverse metabolic states. Here we report two chemically disparate classes of agents that kill M. tuberculosis both when it is replicating and when it is not. Under replicating conditions, the tricyclic 4-hydroxyquinolines and a barbituric acid analogue deplete intrabacterial magnesium as a mechanism of action, and for both compounds, mutations in CorA, a putative Mg2+/Co2+ transporter, conferred resistance to the compounds when M. tuberculosis was under replicating conditions but not under nonreplicating conditions, illustrating that a given compound can kill M. tuberculosis in different metabolic states by disparate mechanisms. Targeting magnesium metallostasis represents a previously undescribed antimycobacterial mode of action that might cripple M. tuberculosis in a Mg2+-deficient intraphagosomal environment of macrophages.


Asunto(s)
Antituberculosos/farmacología , Proteínas de Transporte de Catión/genética , Magnesio/metabolismo , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/genética , Replicación del ADN , Homeostasis , Mutación
5.
ACS Infect Dis ; 5(8): 1433-1445, 2019 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-31184461

RESUMEN

The historical view of ß-lactams as ineffective antimycobacterials has given way to growing interest in the activity of this class against Mycobacterium tuberculosis (Mtb) in the presence of a ß-lactamase inhibitor. However, most antimycobacterial ß-lactams kill Mtb only or best when the bacilli are replicating. Here, a screen of 1904 ß-lactams led to the identification of cephalosporins substituted with a pyrithione moiety at C3' that are active against Mtb under both replicating and nonreplicating conditions, neither activity requiring a ß-lactamase inhibitor. Studies showed that activity against nonreplicating Mtb required the in situ release of the pyrithione, independent of the known class A ß-lactamase, BlaC. In contrast, replicating Mtb could be killed both by released pyrithione and by the parent ß-lactam. Thus, the antimycobacterial activity of pyrithione-containing cephalosporins arises from two mechanisms that kill mycobacteria in different metabolic states.


Asunto(s)
Antituberculosos/farmacología , Cefalosporinas/farmacología , Replicación del ADN , Mycobacterium tuberculosis/efectos de los fármacos , Piridinas/farmacología , Tionas/farmacología , Administración Oral , Animales , Antituberculosos/administración & dosificación , Callithrix , Cefalosporinas/administración & dosificación , Descubrimiento de Drogas , Femenino , Células Hep G2 , Ensayos Analíticos de Alto Rendimiento , Humanos , Ratones , Mycobacterium tuberculosis/fisiología , Piridinas/administración & dosificación , Tionas/administración & dosificación
6.
Science ; 363(6426)2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30705156

RESUMEN

Mycobacterium tuberculosis (Mtb) is the leading infectious cause of death in humans. Synthesis of lipids critical for Mtb's cell wall and virulence depends on phosphopantetheinyl transferase (PptT), an enzyme that transfers 4'-phosphopantetheine (Ppt) from coenzyme A (CoA) to diverse acyl carrier proteins. We identified a compound that kills Mtb by binding and partially inhibiting PptT. Killing of Mtb by the compound is potentiated by another enzyme encoded in the same operon, Ppt hydrolase (PptH), that undoes the PptT reaction. Thus, loss-of-function mutants of PptH displayed antimicrobial resistance. Our PptT-inhibitor cocrystal structure may aid further development of antimycobacterial agents against this long-sought target. The opposing reactions of PptT and PptH uncover a regulatory pathway in CoA physiology.


Asunto(s)
Proteínas Bacterianas/antagonistas & inhibidores , Coenzima A/metabolismo , Guanidina/análogos & derivados , Hidrolasas/antagonistas & inhibidores , Mycobacterium tuberculosis/enzimología , Transferasas (Grupos de Otros Fosfatos Sustitutos)/antagonistas & inhibidores , Urea/análogos & derivados , Proteína Transportadora de Acilo/metabolismo , Animales , Dominio Catalítico , Farmacorresistencia Bacteriana/genética , Femenino , Guanidina/farmacología , Hidrolasas/genética , Metabolismo de los Lípidos , Mutación con Pérdida de Función , Ratones , Ratones Endogámicos BALB C , Mycobacterium tuberculosis/genética , Operón , Unión Proteica , Estructura Terciaria de Proteína , Bibliotecas de Moléculas Pequeñas , Urea/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...