Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Soft Matter ; 20(27): 5447-5455, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38952147

RESUMEN

We present a simple route to obtain large quantities of suspensions of non-Brownian particles with stimuli-responsive surface properties to study the relation between their flow and interparticle interactions. We perform an alkaline hydrolysis reaction on poly(methyl methacrylate) (PMMA) particles to obtain poly(sodium methacrylate) (PMAA-Na) particles. We characterize the quasi-static macroscopic frictional response of their aqueous suspensions using a rotating drum. The suspensions are frictionless when the particles are dispersed in pure water. We relate this state to the presence of electrosteric repulsion between the charged surfaces of the ionized PMAA-Na particles in water. Then we add monovalent and multivalent ions (Na+, Ca2+, La3+) and we observe that the suspensions become frictional whatever the valency. For divalent and trivalent ions, the quasi-static avalanche angle θc at large ionic strength is greater than that of frictional PMMA particles in water, suggesting the presence of adhesion. Finally, a decrease in the pH of the suspending solution leads to a transition between a frictionless plateau and a frictional one. We perform atomic force microscopy (AFM) to relate our macroscopic observations to the surface features of the particles. In particular, we show that the increase in friction in the presence of multivalent ions or under acidic conditions is driven by a nanoscopic phase separation and the bundling of polyelectrolyte chains at the surface of the particle. Our results highlight the importance of surface interactions in the rheology of granular suspensions. Our particles provide a simple, yet flexible platform to study frictional suspension flows.

2.
Langmuir ; 38(46): 14044-14052, 2022 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-36343201

RESUMEN

The colloidal stability of non-motile algal cells in water drives their distribution in space. An accurate description of the interfacial properties of microalgae is therefore critical to understand how microalgae concentrations can change in their biotope or during harvesting processes. Here, we probe the surface charges of three unicellular algae─Chlorella vulgaris, Nannochloropsis oculata, and Tetraselmis suecica─through their electrophoretic mobility. Ohshima's soft particle theory describes the electrokinetic properties of particles covered by a permeable polyelectrolyte layer, a usual case for biological particles. The results appear to fit the predictions of Ohshima's theory, proving that all three microalgae behave electrokinetically as soft particles. This allowed us to estimate two characteristic parameters of the polyelectrolyte external layer of microalgae: the volume charge density and the hydrodynamic penetration length. Results were compared with transmission electron microscopy observations of the algal cells' surfaces, and in particular of their extracellular polymeric layer, which was identified with the permeable shell evidenced by electrophoretic measurements. Noticeably, the algal surface potentials estimated from electrophoretic mobility using the soft particle theory are less negative than the apparent zeta potentials. This finding indicates that electrostatics are expected to play a minor role in phenomena of environmental and industrial importance, such as microalgae aggregation or adhesion.


Asunto(s)
Microalgas , Polielectrolitos , Electroforesis/métodos , Membrana Celular
3.
ACS Macro Lett ; 11(1): 20-25, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-35574801

RESUMEN

Frozen complex coacervate core micelles (C3Ms) were developed as a class of particle stabilizers for Pickering emulsions. The C3Ms are composed of a core of electrostatically interacting weak polyelectrolytes, poly(acrylic acid) (pAA) and poly(dimethylaminopropylacrylamide) (pDMAPAA), surrounded by a corona of water-soluble and surface active poly(N-isopropylacrylamide) (pNiPAM). Mixing parameters of the two polymer solutions, including pH, mixing method, charge ratio, and salinity of the medium, were carefully controlled, leading to monodisperse, colloidally stable C3Ms. A combination of dynamic light scattering and proton nuclear magnetic resonance experiments showed that the C3Ms gradually disassembled from a dynamically frozen core state in pure water into free polyelectrolyte chains above 0.8 M NaCl. Upon formulation of dodecane-in-water emulsions, the frozen C3Ms adsorb as particles at the droplet interfaces in striking contrast with most of the conventional micelles made of amphiphilic block copolymers which fall apart at the interface. Eventually, increasing the salt concentration of the system triggered disassembly of the C3Ms, which led to emulsion destabilization.


Asunto(s)
Micelas , Polímeros , Emulsiones , Polielectrolitos , Agua
4.
Adv Mater ; 33(39): e2101500, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34350646

RESUMEN

Biomimetic exploration of stimuli-responsive and crack-resistant hydrogels is of great academic and practical significance, although the rational design of tough hydrogels is limited by insufficient mechanism study due to the lack of imaging techniques to "see" hydrogels at mesoscale level. A series of composite hydrogels with compartmentalized thermal response is designed by incorporating aggregation- and polarity-sensitive fluorescent probes in a poly(N-isopropylacrylamide) (PNIPAM) network grafted with poly(N,N-dimethylacrylamide) side-chains. The fluorescence technique is explored as a powerful tool to directly visualize their hydrophilicity-hydrophobicity transformation and the composition-dependent microphase separation. Based on the morphological observation and mechanical measurements, the concept of morphomechanics with a comprehensive mechanism clarification is proposed. In this regard, the thermoresponsive toughening is attributed to the formation of multiple noncovalent interactions and the conformational changes of PNIPAM chains. The enhanced fracture energy by crack multifurcation is related to the tearing-like disruption of weak interfaces between the separated phases.

5.
Soft Matter ; 17(14): 3765-3774, 2021 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-33688903

RESUMEN

Understanding confined flows of complex fluids requires simultaneous access to the mechanical behaviour of the liquid and the boundary condition at the interfaces. Here, we use evanescent wave microscopy to investigate near-surface flows of semi-dilute, unentangled polyacrylamide solutions. By using both neutral and anionic polymers, we show that monomer charge plays a key role in confined polymer dynamics. For solutions in contact with glass, the neutral polymers display chain-sized adsorbed layers, while a shear-rate-dependent apparent slip length is observed for anionic polymer solutions. The slip lengths measured at all concentrations collapse onto a master curve when scaled using a simple two-layer depletion model with non-Newtonian viscosity. A transition from an apparent slip boundary condition to a chain-sized adsorption layer is moreover highlighted by screening the charge with additional salt in the anionic polymer solutions. We anticipate that our study will be a starting point for more complex studies relating the polymer dynamics at interfaces to their chemical and physical composition.

6.
Angew Chem Int Ed Engl ; 59(18): 7042-7048, 2020 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-32030858

RESUMEN

The combination of supramolecular chemistry and soft colloids as microgels represents an ambitious way to develop multi-versatile colloidal assemblies. Hereafter, terpyridine-functionalized poly(N-isopropylacrylamide) (PNiPAM) microgel building blocks are shown to undergo an assemble-freeze-disassemble process. The microgel assemblies, which are controlled by monitoring the attractive and repulsive potentials between the soft colloidal particles, are then frozen by forming inter-particle metal-terpyridine bis-complexes upon addition of the metallic cation (such as FeII , CoII ). By oxidation of the metal-terpyridine bis-complex links, the aggregates open up, which is due to the complex dissociation releasing the connected particles in the form of single microgels. We extended our work to the development of 1D filaments and 2D membranes materials made of soft particles connected via supramolecular chemistry.

7.
ACS Macro Lett ; 9(7): 1040-1045, 2020 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-35648615

RESUMEN

An original route to develop an advanced class of microgel emulsifiers containing stimulable metallo-supramolecular instead of frozen covalent cross-links is reported. The poly(N-isopropylmethacrylamide) (PNiPMAM) chains of the microgel are connected by iron(II)-bis(terpyridine) coordination supramolecular complexes that can be cleaved on demand, leading to unique properties both at interfaces and in volume. The microgel synthesis is not demanding, and the characterization of its supramolecular structure can be precisely achieved by standard methods. Singularly, interfaces of an oil-in-water emulsion stabilized by the supramolecular particles can be triggered at the molecular scale by oxidation of Fe(II) to Fe(III), leading to emulsion breaking. In bulk, we show that a microgel dispersion can indeed be transformed into a polymer solution upon oxidation. Our study paves the way to the discovery of unusual microgel properties as our proof-of-concept can be extended to different supramolecular chemistry and architecture.

8.
Soft Matter ; 15(43): 8653-8666, 2019 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-31461108

RESUMEN

Effective remote control of mechanical toughening can be achieved by using thermo-responsive grafts such as poly(N-isopropylacrylamide) (PNIPAm) in a hydrophilic covalently cross-linked polymer network. The weight ratio of PNIPAm grafts in the network may impart such a thermo-responsive mechanical reinforcement. Here, we show that the network topology - especially graft length - is likewise crucial. A series of covalently cross-linked poly(N,N-dimethylacrylamide) (PDMA) gels grafted with PNIPAm side-chains of different lengths were designed and studied on both sides of phase separation temperature Tc, at a fixed overall polymer concentration of 16.7 wt% and constant PDMA/PNIPAm weight ratio. Phase-separated PNIPAm organic micro-domains were expected to act as responsive fillers above Tc and to generate a purely organic nanocomposite (NC). In contrast to conventional NC gels where dissipative processes take place at the solid nanoparticle/matrix interface, here dissipation originates from the disruption of the filler itself by the unravelling of the PNIPAm grafts embedded in collapsed domains. Results show that PNIPAm graft length is a key parameter to enhance - reversibly and on-demand - the mechanical response. The longer the graft is, the more effective the mechanical toughening is. Interestingly, for long PNIPAm grafts, above Tc, the hydrogels combine perfect transparency together with both increased stiffness and fracture toughness (up to 150 J m-2) at constant macroscopic volume. As a proof of concept, stimuli-responsive adhesion and shape-memory properties were designed to probe the inter-chain bridging efficiency (in bulk or bridging the interface).

9.
Soft Matter ; 15(5): 963-972, 2019 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-30652180

RESUMEN

The objective of this work is to synthesize highly stable thermoresponsive microgels that could be used in diverse applications. To achieve this, N-isopropylacrylamide (NiPAM) based microgels were first synthesized by surfactant-free precipitation polymerization of NiPAM in the presence of poly(ethylene glycol)methacrylate (PEG) as a macro-comonomer and methylenebisacrylamide (MBA) as a chemical crosslinker. By combining a complete set of techniques such as dynamic light scattering (DLS), scanning electron microscopy (SEM), zetametry, 1H NMR and micro-differential scanning calorimetry (µDSC), we clearly demonstrate that (i) the incorporation of the PEG chains controls the size and the polydispersity of the NiPAM-based microgels, whereas the thermal behavior in solution (enthalpy, volume phase transition temperature (VPTT)) remains almost the same as for pure NiPAM microgels; (ii) the PEG chains are mainly located on the microgel periphery; and (iii) the presence of the PEG chains strongly increases the colloidal stability of microgels in electrolyte solutions at high temperatures.

10.
Macromol Rapid Commun ; 38(17)2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28718988

RESUMEN

Dual thermoresponsive chemical hydrogels, combining poly(N-isopropylacrylamide) side-chains within a poly(N-acryloylglycinamide) network, are designed following a simple and versatile procedure. These hydrogels exhibit two phase transitions both at low (upper critical solution temperature) and high (lower critical solution temperature) temperatures, thereby modifying their swelling, rheological, and mechanical properties. These novel thermo-schizophrenic hydrogels pave the way for the development of thermotoughening wet materials in a broad range of temperatures.


Asunto(s)
Hidrogeles/química , Fenómenos Mecánicos , Temperatura , Resinas Acrílicas/química , Transición de Fase
11.
Langmuir ; 33(19): 4709-4719, 2017 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-28453278

RESUMEN

We report on the impact of surface hydrophobization on the structure of aqueous silica dispersions and how this structure resists drying stress. Hydrophilic silica particles were hydrophobized directly in water using a range of organosilane precursors, with a precise control of the grafting density. The resulting nanostructure was precisely analyzed by a combination of small-angle X-ray scattering (SAXS) and cryo-microscopy (cryo-TEM). Then, the dispersion was progressively concentrated by drying, and the evolution of the nanostructures as a function of the grafting density was followed by SAXS. At the fundamental level, because the hydrophobic character of the silica surfaces could be varied continuously through a precise control of the grafting density, we were able to observe how the hydrophobic interactions change particles interactions and aggregates structures. Practically, this opened a new route to tailor the final structure, the residual porosity, and the damp-proof properties of the fully dried silica. For example, regardless of the nature of the hydrophobic precursor, a grafting density of 1 grafter per nm2 optimized the interparticle interactions in solution in view to maximize the residual porosity in the dried material (0.9 cm3/g) and reduced the water uptake to less than 4% in weight compared to the typical value of 13% for hydrophilic particles (at T = 25 °C and relative humidity = 80%).

12.
Polymers (Basel) ; 9(2)2017 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-30970739

RESUMEN

PolyCarboxylate ether-based superplasticizers (PCEs) are a type of comb-shaped copolymers used as polymeric dispersants in cementitious materials. PCEs have a high degree of dispersity, which limits the suitability of conventional characterization techniques, such as Size Exclusion Chromatography (SEC). Properties of PCEs strongly depend on their molecular structure and a comprehensive characterization is needed to fully understand the structure⁻property relationships. PCEs with well-defined molecular structures were synthesized to study their solution conformation by SEC and scattering techniques. The combined use of SEC, dynamic light scattering and small-angle neutron scattering allowed us to demonstrate the validity of a scaling law describing the radius of gyration of comb-shaped copolymers as a function of their molecular structure. Moreover, we show that the use of SEC with standard calibration, although widely spread, is not adequate for PCEs.

14.
Adv Mater ; 28(28): 5857-64, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27159115

RESUMEN

A novel mode of gel toughening displaying crack bifurcation is highlighted in phase-separated hydrogels. By exploring original covalent network topologies, phase-separated gels under isochoric conditions demonstrate advanced thermoresponsive mechanical properties: excellent fatigue resistance, self-healing, and remarkable fracture energies. Beyond the phase-transition temperature, the fracture proceeds by a systematic crack-bifurcation process, unreported so far in gels.

15.
J Colloid Interface Sci ; 434: 188-94, 2014 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-25203910

RESUMEN

We investigate the colloidal stability of gold nanoparticles (AuNPs) coated with zwitterionic sulfobetaine polymers in aqueous solution. Zwitterionic polymers with different molar masses, synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization of N,N'-dimethyl(methacrylamido propyl)ammonium propanesulfonate (SPP) exhibit a well known Upper Critical Solution Temperature (UCST) in water, i.e., phase separate at low temperature. The colloidal stability of gold nanoparticles grafted with PSPP was studied as a function of the temperature. The effects of the molar mass of the grafted polymers, the salt concentration, and the presence of free polymer chains in solution were investigated. UV-vis spectroscopy and dynamic light scattering measurements show that whatever the molar mass of the grafted polymer, the nanoparticles never aggregate at low temperature in pure water. However, a reversible thermal-driven aggregation process of the gold nanoparticles is observed in presence of free polymer chains in solution and explained by a depletion process.


Asunto(s)
Ácidos Alcanesulfónicos/química , Coloides/química , Oro/química , Nanopartículas del Metal/química , Polímeros/química , Nanopartículas del Metal/ultraestructura , Concentración Osmolar , Polimerizacion , Temperatura , Agua/química
16.
Langmuir ; 28(8): 3773-82, 2012 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-22242909

RESUMEN

Hybrid polyion complex (HPIC) micelles are nanoaggregates obtained by complexation of multivalent metal ions by double hydrophilic block copolymers (DHBC). Solutions of DHBC such as the poly(acrylic acid)-block-poly(acrylamide) (PAA-b-PAM) or poly(acrylic acid)-block-poly(2-hydroxyethylacrylate) (PAA-b-PHEA), constituted of an ionizable complexing block and a neutral stabilizing block, were mixed with solutions of metal ions, which are either monoatomic ions or metal polycations, such as Al(3+), La(3+), or Al(13)(7+). The physicochemical properties of the HPIC micelles were investigated by small angle neutron scattering (SANS) and dynamic light scattering (DLS) as a function of the polymer block lengths and the nature of the cation. Mixtures of metal cations and asymmetric block copolymers with a complexing block smaller than the stabilizing block lead to the formation of stable colloidal HPIC micelles. The hydrodynamic radius of the HPIC micelles varies with the polymer molecular weight as M(0.6). In addition, the variation of R(h) of the HPIC micelle is stronger when the complexing block length is increased than when the neutral block length is increased. R(h) is highly sensitive to the polymer asymmetry degree (block weight ratio), and this is even more true when the polymer asymmetry degree goes down to values close to 3. SANS experiments reveal that HPIC micelles exhibit a well-defined core-corona nanostructure; the core is formed by the insoluble dense poly(acrylate)/metal cation complex, and the diffuse corona is constituted of swollen neutral polymer chains. The scattering curves were modeled by an analytical function of the form factor; the fitting parameters of the Pedersen's model provide information on the core size, the corona thickness, and the aggregation number of the micelles. For a given metal ion, the micelle core radius increases as the PAA block length. The radius of gyration of the micelle is very close to the value of the core radius, while it varies very weakly with the neutral block length. Nevertheless, the radius of gyration of the micelle is highly dependent on the asymmetry degree of the polymer: if the neutral block length increases in a large extent, the micelle radius of gyration decreases due to a decrease of the micelle aggregation number. The variation of the R(g)/R(h) ratio as a function of the polymer block lengths confirms the nanostructure associating a dense spherical core and a diffuse corona. Finally, the high stability of HPIC micelles with increasing concentration is the result of the nature of the coordination complex bonds in the micelle core.

17.
Langmuir ; 27(20): 12329-35, 2011 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-21902271

RESUMEN

Aggregation of thermosensitive polymer-coated gold nanoparticles was performed in aqueous solution in the presence of a triblock copolymer poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) (Pluronic P123, PEO(20)-PPO(68)-PEO(20)). The gold nanoparticles, AuNPs, which are covered by thermosensitive statistical copolymers poly(EO(x)-st-PO(y)), aggregate when the temperature is higher than the phase transition temperature of the polymer, leading to a macroscopic precipitation. The presence of Pluronic chains in solution prevents the uncontrolled aggregation of the AuNPs at higher temperature than both the aggregation temperature of the AuNPs (T(agg)) and the critical micellization temperature (cmt) of the Pluronic. The size, the colloidal stability, and the optical properties of the AuNPs aggregates are modulated as a function of the P123-to-AuNP ratio, which constitutes the critical parameter of the system. Moreover, the AuNP aggregation is totally reversible upon decreasing the temperature below T(agg). Our approach constitutes an easy way to the formation of well-controlled nanoparticle aggregates with well-defined sizes. The resulting aggregates have been characterized by UV-vis spectroscopy, dynamic light scattering, and electron microscopy.


Asunto(s)
Oro/química , Nanopartículas del Metal/química , Poloxaleno/química , Ácido 8,11,14-Eicosatrienoico/química , Microscopía Electrónica de Transmisión , Modelos Moleculares , Temperatura , Termodinámica , Agua/química
18.
Langmuir ; 26(17): 13839-46, 2010 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-20681739

RESUMEN

Highly monodisperse poly(N-isopropylacrylamide), PNiPAM, microgels were prepared by the conventional radical polymerization of NiPAM in the presence of dimethylamino ethyl methacrylate (DMAEMA) monomers at various concentrations. The effect of DMAEMA on the polymerization of PNiPAM microgels was examined at constant initiator (V50) and cross-linker (MBA) concentrations. The presence of DMAEMA in the synthesis batch allows for the preparation of PNiPAM microgels with controlled size and a narrow size distribution. The oil(dodecane)/water interfacial properties of the model PNiPAM microgels were then investigated. The pendant drop technique was used to measure the interfacial tensions as a function of temperature. Over the whole range of temperature (20-45 degrees C), the interfacial tension remains low (on the order of 17 mN/m) and goes through a minimum (12 mN/m) at a temperature of about 34 degrees C, which well matches the volume phase transition temperature (VPTT) of PNiPAM microgels. Below the VPTT, the decrease in the interfacial tension with temperature is likely to be due to the adsorption of dense layers because of the decrease of the excluded volume interactions. Above the VPTT, we suggest that the increase in the interfacial tension with temperature comes from the adsorption of loosely packed PNiPAM microgels. We also studied the effect of temperature on the stability of emulsions. Dodecane in water emulsions, which form at ambient temperature, are destabilized as the temperature exceeds the VPTT. In light of the interfacial tension results, we suggest that emulsion destabilization arises from the adsorption of aggregates above the VPTT and not from an important desorption of microgels. Aggregate adsorption would bring a sufficiently high number of dodecane molecules into contact with water to induce coalescence without changing the interfacial tension very much.


Asunto(s)
Acrilamidas/química , Alcanos/química , Polímeros/química , Temperatura , Agua/química , Resinas Acrílicas , Geles/química , Metacrilatos/química , Tamaño de la Partícula , Propiedades de Superficie
19.
Langmuir ; 26(14): 12321-9, 2010 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-20527978

RESUMEN

Two amino-terminated amphiphilic copolymers, M600 and M1000, with different ethylene oxide to propylene oxide EO/PO ratios, 1/9 and 19/3, respectively, were coupled by thioctic acid, which allows an excellent affinity with gold surface. Then, amphiphilic thermally responsive gold nanoparticles (AuNPs) were prepared either by ligands exchange on precursor gold nanoparticles or by direct reduction of gold source in presence of stabilizing copolymers. The as-obtained AuNPs are monodisperse with a size varying from 2 to 17 nm depending on the synthesis used. The main parameters controlling the AuNPs assemblies were identified: the ethylene oxide to propylene oxide ratio in the polymer corona, the ionic strength of the solution, and the curvature of AuNPs. An interesting result is the possibility to tune the aggregation temperature from 8 to 15 degrees C of AuNPs coated by the same polymer only by changing the curvature of the AuNPs from 17 to 2 nm. This temperature change versus the curvature of the nanoparticle is ascribed to the decrease in hydration volume per hydrophilic group in the corona due to the change of the polymer chain conformation with changing the particle size. Moreover, one unique aggregation temperature between 12 and 60 degrees C can be also obtained by mixing copolymers with different EO/PO ratios. Then, the corona, constituted by a mixture of polymers, behaves as a corona composed by an average statistic copolymer with the intermediate composition.


Asunto(s)
Oro/química , Nanopartículas del Metal/química , Polietilenos/química , Polipropilenos/química , Ligandos , Tamaño de la Partícula , Temperatura
20.
J Am Chem Soc ; 132(13): 4556-7, 2010 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-20235547

RESUMEN

We have developed a novel surface coating for semiconductor quantum dots (QDs) based on a heterobifunctional ligand that overcomes most of the previous limits of these fluorescent probes in bioimaging applications. Here we show that QDs capped with bidentate zwitterionic dihydrolipoic acid-sulfobetaine (DHLA-SB) ligands are a favorable alternative to polyethylene glycol-coated nanoparticles since they combine small sizes, low nonspecific adsorption, preserved optical properties, and excellent stability over time and a wide range of pH and salinity. Additionally, these QDs can easily be functionalized with biomolecules such as streptavidin (SA) and biotin. We applied streptavidin-functionalized DHLA-SB QDs to track the intracellular recycling of cannabinoid receptor 1 (CB1R) in live cells. These QDs selectively recognized the pool of receptors at the cell surface via SA-biotin interactions with negligible nonspecific adsorption. The QDs retained their optical properties, allowing the internalization of CB1R into endosomes to be followed. Moreover, the cellular activity was apparently unaffected by the probe.


Asunto(s)
Betaína/análogos & derivados , Imagen Molecular/métodos , Puntos Cuánticos , Ácido Tióctico/análogos & derivados , Betaína/química , Línea Celular , Supervivencia Celular , Humanos , Ligandos , Microscopía Fluorescente , Tamaño de la Partícula , Receptor Cannabinoide CB1/química , Propiedades de Superficie , Ácido Tióctico/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA