Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38798753

RESUMEN

Objectives: Opioid use disorder (OUD)-associated overdose deaths have reached epidemic proportions worldwide. An important driving force for relapse is anxiety associated with opioid withdrawal. We hypothesized that our new technology, termed heterodyned whole-body vibration (HWBV) would ameliorate anxiety associated with OUD. Methods: Using a randomized, placebo (sham)-controlled, double-blind study design in an NIH-sponsored Phase 1 trial, we evaluated 60 male and 26 female participants diagnosed with OUD and undergoing treatment at pain and rehabilitation clinics. We utilized the Hamilton Anxiety Scale (HAM-A) and a daily visual analog scale anxiety rating (1-10) to evaluate anxiety. Subjects were treated for 10 min 5X/week for 4 weeks with either sham vibration (no interferential beat or harmonics) or HWBV (beats and harmonics). The participants also completed a neuropsychological test battery at intake and discharge. Results: In OUD subjects with moderate anxiety, there was a significant improvement in daily anxiety scores in the HWBV group compared to the sham treatment group (p=3.41 × 10-7). HAM-A scores in OUD participants at intake showed moderate levels of anxiety in OUD participants (HWBV group: 15.9 ± 1.6; Sham group: 17.8 ± 1.6) and progressively improved in both groups at discharge, but improvement was greater in the HWBV group (p=1.37 × 10-3). Furthermore, three indices of neuropsychological testing (mental rotations, spatial planning, and response inhibition) were significantly improved by HWBV treatment. Conclusions: These findings support HWBV as a novel, non-invasive, non-pharmacological treatment for anxiety associated with OUD.

2.
Genet Med ; 26(2): 101029, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37982373

RESUMEN

PURPOSE: The terminology used for gene-disease curation and variant annotation to describe inheritance, allelic requirement, and both sequence and functional consequences of a variant is currently not standardized. There is considerable discrepancy in the literature and across clinical variant reporting in the derivation and application of terms. Here, we standardize the terminology for the characterization of disease-gene relationships to facilitate harmonized global curation and to support variant classification within the ACMG/AMP framework. METHODS: Terminology for inheritance, allelic requirement, and both structural and functional consequences of a variant used by Gene Curation Coalition members and partner organizations was collated and reviewed. Harmonized terminology with definitions and use examples was created, reviewed, and validated. RESULTS: We present a standardized terminology to describe gene-disease relationships, and to support variant annotation. We demonstrate application of the terminology for classification of variation in the ACMG SF 2.0 genes recommended for reporting of secondary findings. Consensus terms were agreed and formalized in both Sequence Ontology (SO) and Human Phenotype Ontology (HPO) ontologies. Gene Curation Coalition member groups intend to use or map to these terms in their respective resources. CONCLUSION: The terminology standardization presented here will improve harmonization, facilitate the pooling of curation datasets across international curation efforts and, in turn, improve consistency in variant classification and genetic test interpretation.


Asunto(s)
Pruebas Genéticas , Variación Genética , Humanos , Alelos , Bases de Datos Genéticas
3.
Int J Mol Sci ; 24(18)2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37762450

RESUMEN

Peripheral mechanoreceptor-based treatments such as acupuncture and chiropractic manipulation have shown success in modulating the mesolimbic dopamine (DA) system originating in the ventral tegmental area (VTA) of the midbrain and projecting to the nucleus accumbens (NAc) of the striatum. We have previously shown that mechanoreceptor activation via whole-body vibration (WBV) ameliorates neuronal and behavioral effects of chronic ethanol exposure. In this study, we employ a similar paradigm to assess the efficacy of WBV as a preventative measure of neuronal and behavioral effects of morphine withdrawal in a Wistar rat model. We demonstrate that concurrent administration of WBV at 80 Hz with morphine over a 5-day period significantly reduced adaptations in VTA GABA neuronal activity and NAc DA release and modulated expression of δ-opioid receptors (DORs) on NAc cholinergic interneurons (CINs) during withdrawal. We also observed a reduction in behavior typically associated with opioid withdrawal. WBV represents a promising adjunct to current intervention for opioid use disorder (OUD) and should be examined translationally in humans.


Asunto(s)
Terapia por Acupuntura , Morfina , Humanos , Ratas , Animales , Ratas Wistar , Vibración/uso terapéutico , Interneuronas
4.
Biochim Biophys Acta Gene Regul Mech ; 1864(10): 194745, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34389511

RESUMEN

The Sequence Ontology (SO) is a structured, controlled vocabulary that provides terms and definitions for genomic annotation. The Gene Regulation Ensemble Effort for the Knowledge Commons (GREEKC) initiative has gathered input from many groups of researchers, including the SO, the Gene Ontology (GO), and gene regulation experts, with the goal of curating information about how gene expression is regulated at the molecular level. Here we discuss recent updates to the SO reflecting current knowledge. We have developed more accurate human-readable terms (also known as classes), including new definitions, and relationships related to the expression of genes. New findings continue to give us insight into the biology of gene regulation, including the order of events, and participants in those events. These updates to the SO support logical reasoning with the current understanding of gene expression regulation at the molecular level.


Asunto(s)
Ontologías Biológicas , Regulación de la Expresión Génica , Elementos Reguladores de la Transcripción , Región de Control de Posición
5.
Theranostics ; 11(8): 3552-3564, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33664847

RESUMEN

Rationale: The clinical use of PI3K inhibitors, such as buparlisib, has been plagued with toxicity at effective doses. The aim of this study is to determine if vitamin C, a potent epigenetic regulator, can improve the therapeutic outcome and reduce the dose of buparlisib in treating PIK3CA-mutated triple negative breast cancer (TNBC). Methods: The response of TNBC cells to buparlisib was assessed by EC50 measurements, apoptosis assay, clonogenic assay, and xenograft assay in mice. Molecular approaches including Western blot, immunofluorescence, RNA sequencing, and gene silencing were utilized as experimental tools. Results: Treatment with buparlisib at lower doses, along with vitamin C, induced apoptosis and inhibited the growth of TNBC cells in vitro. Vitamin C via oral delivery rendered a sub-therapeutic dose of buparlisib able to inhibit TNBC xenograft growth and to markedly block metastasis in mice. We discovered that buparlisib and vitamin C coordinately reduced histone H3K4 methylation by enhancing the nuclear translocation of demethylase, KDM5, and by serving as a cofactor to promote KDM5-mediated H3K4 demethylation. The expression of genes in the PI3K pathway, such as AKT2 and mTOR, was suppressed by vitamin C in a KDM5-dependent manner. Vitamin C and buparlisib cooperatively blocked AKT phosphorylation. Inhibition of KDM5 largely abolished the effect of vitamin C on the response of TNBC cells to buparlisib. Additionally, vitamin C and buparlisib co-treatment changed the expression of genes, including PCNA and FILIP1L, which are critical to cancer growth and metastasis. Conclusion: Vitamin C can be used to reduce the dosage of buparlisib needed to produce a therapeutic effect, which could potentially ease the dose-dependent side effects in patients.


Asunto(s)
Ácido Ascórbico/administración & dosificación , Inhibidores de las Quinasa Fosfoinosítidos-3/administración & dosificación , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Aminopiridinas/administración & dosificación , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Sinergismo Farmacológico , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Código de Histonas/efectos de los fármacos , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Terapia Molecular Dirigida , Morfolinas/administración & dosificación , Medicina de Precisión , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Ensayos Antitumor por Modelo de Xenoinjerto
6.
J Neurochem ; 157(6): 1759-1773, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-32219848

RESUMEN

Ascorbic acid (vitamin C) is critical for Schwann cells to myelinate peripheral nerve axons during development and remyelination after injury. However, its exact mechanism remains elusive. Vitamin C is a dietary nutrient that was recently discovered to promote active DNA demethylation. Schwann cell myelination is characterized by global DNA demethylation in vivo and may therefore be regulated by vitamin C. We found that vitamin C induces a massive transcriptomic shift (n = 3,848 genes) in primary cultured Schwann cells while simultaneously producing a global increase in genomic 5-hydroxymethylcytosine (5hmC), a DNA demethylation intermediate which regulates transcription. Vitamin C up-regulates 10 pro-myelinating genes which exhibit elevated 5hmC content in both the promoter and gene body regions of these loci following treatment. Using a mouse model of human vitamin C metabolism, we found that maternal dietary vitamin C deficiency causes peripheral nerve hypomyelination throughout early development in resulting offspring. Additionally, dietary vitamin C intake regulates the expression of myelin-related proteins such as periaxin (PRX) and myelin basic protein (MBP) during development and remyelination after injury in mice. Taken together, these results suggest that vitamin C cooperatively promotes myelination through 1) increased DNA demethylation and transcription of pro-myelinating genes, and 2) its known role in stabilizing collagen helices to form the basal lamina that is necessary for myelination.


Asunto(s)
Ácido Ascórbico/administración & dosificación , Ácido Ascórbico/metabolismo , Desmetilación del ADN/efectos de los fármacos , Proteínas de la Mielina/metabolismo , Vaina de Mielina/metabolismo , Células de Schwann/fisiología , Animales , Ácido Ascórbico/genética , Deficiencia de Ácido Ascórbico/tratamiento farmacológico , Deficiencia de Ácido Ascórbico/genética , Deficiencia de Ácido Ascórbico/metabolismo , Células Cultivadas , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas de la Mielina/genética , Vaina de Mielina/efectos de los fármacos , Vaina de Mielina/genética , Ratas Endogámicas F344 , Células de Schwann/efectos de los fármacos , Neuropatía Ciática/tratamiento farmacológico , Neuropatía Ciática/genética , Neuropatía Ciática/metabolismo
7.
Exp Cell Res ; 397(2): 112358, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33160998

RESUMEN

The fundamental question about the functionality of in vitro derived human primordial germ cell-like cells remains unanswered, despite ongoing research in this area. Attempts have been made to imitate the differentiation of human primordial germ cells (hPGCs) and meiocytes in vitro from human pluripotent stem cells (hPSCs). A defined system for developing human haploid cells in vitro is the challenge that scientists face to advance the knowledge of human germ cell development. To develop human primordial germ cell-like cells (hPGCLCs) from human pluripotent stem cells (hPSCs) that are capable of giving rise to haploid cells, we applied a sequential induction protocol via the early mesodermal push of female human embryonic and induced pluripotent stem cells. BMP4-induced early mesoderm-like cells showed significant alterations in their expression profiles toward early (PRDM1 and NANOS3) and late (VASA and DAZL) germ cell markers. Furthermore, using retinoic acid (RA), we induced hPGCLCs in embryoid bodies and identified positive staining for the meiotic initiation marker STRA8. Efforts to find the cells exhibiting progression to meiosis were unsuccessful. The validation by the expression of SCP3 did not correspond to the natural pattern. Regarding the 20-day meiotic induction, the derived hPGCLCs containing two X-chromosomes were unable to complete the meiotic division. We observed the expression of the oocyte marker PIWIL1 and PIWIL4. RNAseq analysis and cluster dendrogram showed a similar clustering of hPGCLC groups and meiotic like cell groups as compared to previously published data. This reproducible in vitro model for deriving hPGCLCs provides opportunities for studying the molecular mechanisms involved in the specification of hPGCs. Moreover, our results will support a further elucidation of gametogenesis and meiosis of female hPGCs.


Asunto(s)
Diferenciación Celular , Cuerpos Embrioides/citología , Regulación del Desarrollo de la Expresión Génica , Células Germinativas/citología , Células Madre Pluripotentes Inducidas/citología , Meiosis , Células Cultivadas , Cuerpos Embrioides/metabolismo , Femenino , Perfilación de la Expresión Génica , Células Germinativas/metabolismo , Humanos , Técnicas In Vitro , Células Madre Pluripotentes Inducidas/metabolismo , RNA-Seq
8.
Transl Vis Sci Technol ; 9(11): 1, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33101779

RESUMEN

Purpose: To evaluate the long-term effects of mitochondrial gene transfer of mutant human NADH ubiquinone oxidoreductase subunit VI (hND6T14484C) in the mouse eye. Methods: Adult mice were injected intravitreally with mitochondrial-targeted adeno-associated virus carrying either hND6T14484C or mitochondrial encoded mCherry. The delivery and expression of the interest gene were detected by polymerase chain reaction (PCR), quantitative PCR (qPCR), and immunostaining. The pathologic effects of the mutant gene in live mice were assessed with RNA-seq, serial spectral domain optical coherence tomography (SD-OCT), and pattern electroretinogram (PERG). Results: Delivered hND6 was found 30-fold greater than endogenous mouse ND6 in microdissected retinal ganglion cells of hND6-injected mice. Compared to controls injected with mCherry, PERG amplitude of hND6 mice dropped significantly at 3 (P = 0.0023), 6 (P = 0.0058), and 15 (P = 0.031) months after injection. SD-OCT revealed swelling of the optic nerve head followed by the progressive retinal and optic nerve atrophy in hND6 mice. Furthermore, RNA-seq data showed a change in 381 transcripts' expression in these mice compared to mCherry mice. Postmortem analysis showed hND6 mice had marked atrophy of the entire optic nerve, from the globe to the optic chiasm, and a significant loss of retinal ganglion cells compared to age-matched control mice (P = 1.7E-9). Conclusions: Delivered hND6T14484C induces visual loss and optic neuropathy in mice, the hallmarks of human Leber's hereditary optic neuropathy (LHON). Translational Relevance: Results from this study will help establish a novel strategy not only to generate an LHON animal model but also to provide a potential to treat this or any other mitochondrial diseases.


Asunto(s)
ADN Mitocondrial , Atrofia Óptica Hereditaria de Leber , Animales , Electrorretinografía , Humanos , Ratones , Atrofia Óptica Hereditaria de Leber/genética , Nervio Óptico/diagnóstico por imagen , Células Ganglionares de la Retina
9.
PLoS One ; 15(3): e0230566, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32208444

RESUMEN

A phenomenon of genetic compensation is commonly observed when an organism with a disease-bearing mutation shows incomplete penetrance of the disease phenotype. Such incomplete phenotypic penetrance, or genetic compensation, is more commonly found in stable knockout models, rather than transient knockdown models. As such, these incidents present a challenge for the disease modeling field, although a deeper understanding of genetic compensation may also hold the key for novel therapeutic interventions. In our study we created a knockout model of slc25a46 gene, which is a recently discovered important player in mitochondrial dynamics, and deleterious mutations in which are known to cause peripheral neuropathy, optic atrophy and cerebellar ataxia. We report a case of genetic compensation in a stable slc25a46 homozygous zebrafish mutant (hereafter referred as "mutant"), in contrast to a penetrant disease phenotype in the first generation (F0) slc25a46 mosaic mutant (hereafter referred as "crispant"), generated with CRISPR/Cas-9 technology. We show that the crispant phenotype is specific and rescuable. By performing mRNA sequencing, we define significant changes in slc25a46 mutant's gene expression profile, which are largely absent in crispants. We find that among the most significantly altered mRNAs, anxa6 gene stands out as a functionally relevant player in mitochondrial dynamics. We also find that our genetic compensation case does not arise from mechanisms driven by mutant mRNA decay. Our study contributes to the growing evidence of the genetic compensation phenomenon and presents novel insights about Slc25a46 function. Furthermore, our study provides the evidence for the efficiency of F0 CRISPR screens for disease candidate genes, which may be used to advance the field of functional genetics.


Asunto(s)
Sistemas CRISPR-Cas , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas de Pez Cebra/genética , Pez Cebra/genética , Animales , Ataxia Cerebelosa/genética , Modelos Animales de Enfermedad , Femenino , Marcación de Gen , Masculino , Mutagénesis , Mutación , Atrofia Óptica/genética , Enfermedades del Sistema Nervioso Periférico/genética
10.
Life Sci Alliance ; 3(1)2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31882444

RESUMEN

Epigenetic variation reflects the impact of a dynamic environment on chromatin. However, it remains elusive how environmental factors influence epigenetic events. Here, we show that G protein-coupled receptors (GPCRs) alter H3K4 methylation via oscillatory intracellular cAMP. Activation of Gs-coupled receptors caused a rapid decrease of H3K4me3 by elevating cAMP, whereas stimulation of Gi-coupled receptors increased H3K4me3 by diminishing cAMP. H3K4me3 gradually recovered towards baseline levels after the removal of GPCR ligands, indicating that H3K4me3 oscillates in tandem with GPCR activation. cAMP increased intracellular labile Fe(II), the cofactor for histone demethylases, through a non-canonical cAMP target-Rap guanine nucleotide exchange factor-2 (RapGEF2), which subsequently enhanced endosome acidification and Fe(II) release from the endosome via vacuolar H+-ATPase assembly. Removing Fe(III) from the media blocked intracellular Fe(II) elevation after stimulation of Gs-coupled receptors. Iron chelators and inhibition of KDM5 demethylases abolished cAMP-mediated H3K4me3 demethylation. Taken together, these results suggest a novel function of cAMP signaling in modulating histone demethylation through labile Fe(II).


Asunto(s)
AMP Cíclico/análogos & derivados , Desmetilación/efectos de los fármacos , Compuestos Ferrosos/metabolismo , Histonas/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Tionucleótidos/metabolismo , Animales , Células Cultivadas , AMP Cíclico/metabolismo , AMP Cíclico/farmacología , Silenciador del Gen , Histona Demetilasas con Dominio de Jumonji/genética , Histona Demetilasas con Dominio de Jumonji/metabolismo , Ligandos , Metilación/efectos de los fármacos , Oxidorreductasas N-Desmetilantes/genética , Oxidorreductasas N-Desmetilantes/metabolismo , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Procesamiento Proteico-Postraduccional/genética , Ratas , Receptores Acoplados a Proteínas G/metabolismo , Células de Schwann , Tionucleótidos/farmacología , Transfección
11.
EBioMedicine ; 43: 201-210, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30975544

RESUMEN

BACKGROUND: Bromodomain and extra-terminal inhibitors (BETi) have shown efficacy for the treatment of aggressive triple negative breast cancer (TNBC). However, BETi are plagued by a narrow therapeutic window as manifested by severe toxicities at effective doses. Therefore, it is a limitation to their clinical implementation in patient care. METHODS: The impact of vitamin C on the efficacy of small compounds including BETi was assessed by high-throughput screening. Co-treatment of TNBC by BETi especially JQ1 and vitamin C was evaluated in vitro and in vivo. FINDINGS: High-throughput screening revealed that vitamin C improves the efficacy of a number of structurally-unrelated BETi including JQ1, I-BET762, I-BET151, and CPI-203 in treating TNBC cells. The synergy between BETi and vitamin C is due to suppressed histone acetylation (H3ac and H4ac), which is in turn caused by upregulated histone deacetylase 1 (HDAC1) expression upon vitamin C addition. Treatment with JQ1 at lower doses together with vitamin C induces apoptosis and inhibits the clonogenic ability of cultured TNBC cells. Oral vitamin C supplementation renders a sub-therapeutic dose of JQ1 able to inhibit human TNBC xenograft growth and metastasis in mice. INTERPRETATION: Vitamin C expands the therapeutic window of BETi by sensitizing TNBC to BETi. Using vitamin C as a co-treatment, lower doses of BETi could be used to achieve an increased therapeutic index in patients, which will translate to a reduced side effect profile. FUND: University of Miami Sylvester Comprehensive Cancer Center, Bankhead Coley Cancer Research program (7BC10), Flight Attendant Medical Research Institute, and NIH R21CA191668 (to GW) and 1R56AG061911 (to CW and CHV).


Asunto(s)
Antineoplásicos/farmacología , Ácido Ascórbico/administración & dosificación , Suplementos Dietéticos , Proteínas/antagonistas & inhibidores , Neoplasias de la Mama Triple Negativas/metabolismo , Acetilación , Animales , Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Azepinas/farmacología , Línea Celular Tumoral , Modelos Animales de Enfermedad , Sinergismo Farmacológico , Femenino , Perfilación de la Expresión Génica , Silenciador del Gen , Histona Desacetilasa 1/genética , Histona Desacetilasa 1/metabolismo , Humanos , Ratones , Triazoles/farmacología , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología , Ensayos Antitumor por Modelo de Xenoinjerto
12.
Invest Ophthalmol Vis Sci ; 59(8): 3608-3618, 2018 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-30025088

RESUMEN

Purpose: To investigate the impact of ascorbate, via DNA hydroxymethylation, on VEGF expression in retinal pigment epithelial (RPE) cells. Methods: Dot-blot and hydroxymethylated DNA immunoprecipitation sequencing were applied to evaluate the impact of ascorbate on DNA hydroxymethylation in ARPE-19 cells. RNA sequencing (RNA-seq) was carried out to analyze the transcriptome. Quantitative RT-PCR and ELISA were conducted to examine the transcription and secretion of VEGF from cultured cells. Primary human fetal RPE cells and RPE-J cells were used to verify the effect of ascorbate on VEGF expression. ELISA was used to measure VEGF in the vitreous humor of Gulo-/- mice, which, like humans, cannot synthesize ascorbate de novo. Results: Treatment with ascorbate (50 µM) promoted 5-hydroxymethycytosine (5hmC) generation and changed the genome-wide profiles of 5hmC in ARPE-19 cells. Ascorbate also caused a dramatic shift in the transcriptome-3186 differential transcripts, of which 69.3% are correlated with altered 5hmC in promoters or gene bodies. One of the most downregulated genes was VEGFA, which encodes the VEGF protein. The suppression of VEGF by ascorbate is independent of hypoxia-inducible factor 1-alpha (HIF-1α) but correlates with increased 5hmC in the gene body. The decreased transcription and secretion of VEGF by ascorbate were verified in primary human fetal RPE cells. Furthermore, adding ascorbate in the diet for Gulo-/- mice resulted in decreased levels of VEGF in the RPE/choroid and vitreous humor. Conclusions: Ascorbate inhibits VEGF expression in RPE cells likely via DNA hydroxymethylation. Thus, ascorbate could be implicated in the prevention or treatment of diseases such as age-related macular degeneration (AMD).


Asunto(s)
Ácido Ascórbico/farmacología , ADN/genética , Regulación de la Expresión Génica , Degeneración Macular/genética , Epitelio Pigmentado de la Retina/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Animales , Supervivencia Celular , Células Cultivadas , Ensayo de Inmunoadsorción Enzimática , Humanos , Immunoblotting , Degeneración Macular/tratamiento farmacológico , Degeneración Macular/metabolismo , Ratones , Reacción en Cadena en Tiempo Real de la Polimerasa , Epitelio Pigmentado de la Retina/patología , Factor A de Crecimiento Endotelial Vascular/biosíntesis , Factor A de Crecimiento Endotelial Vascular/efectos de los fármacos
13.
Hum Genet ; 137(6-7): 479-486, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29982980

RESUMEN

While recent studies have revealed a substantial portion of the genes underlying human hearing loss, the extensive genetic landscape has not been completely explored. Here, we report a loss-of-function variant (c.72delA) in MPZL2 in three unrelated multiplex families from Turkey and Iran with autosomal recessive nonsyndromic hearing loss. The variant co-segregates with moderate sensorineural hearing loss in all three families. We show a shared haplotype flanking the variant in our families implicating a single founder. While rare in other populations, the allele frequency of the variant is ~ 0.004 in Ashkenazi Jews, suggesting that it may be an important cause of moderate hearing loss in that population. We show that Mpzl2 is expressed in mouse inner ear, and the protein localizes in the auditory inner and outer hair cells, with an asymmetric subcellular localization. We thus present MPZL2 as a novel gene associated with sensorineural hearing loss.


Asunto(s)
Moléculas de Adhesión Celular/genética , Sordera/genética , Células Ciliadas Auditivas Internas/metabolismo , Pérdida Auditiva Sensorineural/genética , Animales , Sordera/fisiopatología , Oído Interno/crecimiento & desarrollo , Oído Interno/fisiopatología , Femenino , Frecuencia de los Genes , Genes Recesivos , Células Ciliadas Auditivas Internas/patología , Haplotipos/genética , Pérdida Auditiva Sensorineural/fisiopatología , Humanos , Irán/epidemiología , Judíos/genética , Masculino , Ratones , Mutación , Linaje , Células de Schwann/patología , Turquía
14.
Sci Rep ; 8(1): 5306, 2018 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-29593282

RESUMEN

Genomic loss of 5-hydroxymethylcytosine (5hmC) accompanies malignant cellular transformation in breast cancer. Vitamin C serves as a cofactor for TET methylcytosine dioxygenases to increase 5hmC generation. Here we show that the transcription of SVCT2, a major vitamin C transporter, was decreased in human breast cancers (113 cases) compared to normal breast tissues from the same patients. A decreased SVCT2 expression was also observed in breast cancer cell lines. Treatment with vitamin C (100 µM) increased the 5hmC content in MDA-MB-231 breast cancer cells and markedly altered the transcriptome. The vitamin C treatment induced apoptosis in MDA-MB-231 cells, which was verified in two additional breast cancer cell lines. This pro-apoptotic effect of vitamin C appeared to be mediated by TRAIL, a known apoptosis inducer. Vitamin C upregulated TRAIL transcripts (2.3-fold increase) and increased TRAIL protein levels. The upregulation of TRAIL by vitamin C was largely abolished by siRNAs targeting TETs and anti-TRAIL antibody abrogated the induction of apoptosis. Furthermore, the apoptosis promoted by vitamin C was associated with Bax and caspases activation, Bcl-xL sequestration, and cytochrome c release. Taken together, these results suggest a potential role of physiological doses of vitamin C in breast cancer prevention and treatment.


Asunto(s)
Ácido Ascórbico/farmacología , Neoplasias de la Mama/patología , Ligando Inductor de Apoptosis Relacionado con TNF/efectos de los fármacos , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Apoptosis/efectos de los fármacos , Ácido Ascórbico/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Células MCF-7 , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/genética , Transportadores de Sodio Acoplados a la Vitamina C/genética , Transportadores de Sodio Acoplados a la Vitamina C/metabolismo
15.
Cancer Res ; 78(2): 572-583, 2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29180474

RESUMEN

Bromodomain and extraterminal inhibitors (BETi) are promising cancer therapies, yet prominent side effects of BETi at effective doses have been reported in phase I clinical trials. Here, we screened a panel of small molecules targeting epigenetic modulators against human metastatic melanoma cells. Cells were pretreated with or without ascorbate (vitamin C), which promotes DNA demethylation and subsequently changes the sensitivity to drugs. Top hits were structurally unrelated BETi, including JQ1, I-BET151, CPI-203, and BI-2536. Ascorbate enhanced the efficacy of BETi by decreasing acetylation of histone H4, but not H3, while exerting no effect on the expression of BRD proteins. Histone acetyltransferase 1 (HAT1), which catalyzes H4K5ac and H4K12ac, was downregulated by ascorbate mainly via the TET-mediated DNA hydroxymethylation pathway. Loss of H4ac, especially H4K5ac and H4K12ac, disrupted the interaction between BRD4 and H4 by which ascorbate and BETi blocked the binding of BRD4 to acetylated histones. Cotreatment with ascorbate and JQ1 induced apoptosis and inhibited proliferation of cultured melanoma cells. Ascorbate deficiency as modeled in Gulo-/- mice diminished the treatment outcome of JQ1 for melanoma tumorgraft. In contrast, ascorbate supplementation lowered the effective dose of JQ1 needed to successfully inhibit melanoma tumors in mice. On the basis of our findings, future clinical trials with BETi should consider ascorbate levels in patients. Furthermore, ascorbate supplementation might help reduce the severe side effects that arise from BETi therapy by reducing the dosage necessary for treatment.Significance: This study shows that ascorbate can enhance the efficacy of BET inhibitors, providing a possible clinical solution to challenges arising in phase I trials from the dose-dependent side effects of this class of epigenetic therapy. Cancer Res; 78(2); 572-83. ©2017 AACR.


Asunto(s)
Antioxidantes/farmacología , Apoptosis/efectos de los fármacos , Ácido Ascórbico/farmacología , Azepinas/farmacología , Sinergismo Farmacológico , Melanoma/tratamiento farmacológico , Proteínas/antagonistas & inhibidores , Triazoles/farmacología , Acetilación , Animales , Biomarcadores de Tumor/metabolismo , Proliferación Celular/efectos de los fármacos , Combinación de Medicamentos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Histonas/metabolismo , Humanos , Melanoma/metabolismo , Melanoma/patología , Ratones , Ratones Endogámicos C57BL , Ratones Desnudos , Dominios Proteicos , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
16.
Elife ; 62017 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-29239726

RESUMEN

It is widely accepted that cAMP regulates gene transcription principally by activating the protein kinase A (PKA)-targeted transcription factors. Here, we show that cAMP enhances the generation of 5-hydroxymethylcytosine (5hmC) in multiple cell types. 5hmC is converted from 5-methylcytosine (5mC) by Tet methylcytosine dioxygenases, for which Fe(II) is an essential cofactor. The promotion of 5hmC was mediated by a prompt increase of the intracellular labile Fe(II) pool (LIP). cAMP enhanced the acidification of endosomes for Fe(II) release to the LIP likely through RapGEF2. The effect of cAMP on Fe(II) and 5hmC was confirmed by adenylate cyclase activators, phosphodiesterase inhibitors, and most notably by stimulation of G protein-coupled receptors (GPCR). The transcriptomic changes caused by cAMP occurred in concert with 5hmC elevation in differentially transcribed genes. Collectively, these data show a previously unrecognized regulation of gene transcription by GPCR-cAMP signaling through augmentation of the intracellular labile Fe(II) pool and DNA hydroxymethylation.


Asunto(s)
5-Metilcitosina/análogos & derivados , AMP Cíclico/metabolismo , ADN/metabolismo , Hierro/metabolismo , Metilación , Transducción de Señal , 5-Metilcitosina/metabolismo , Animales , Células Cultivadas , Regulación de la Expresión Génica , Ratas , Células de Schwann/metabolismo
17.
Invest Ophthalmol Vis Sci ; 58(6): BIO240-BIO246, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28820917

RESUMEN

Purpose: To identify genomic mutations in lacrimal gland adenoid cystic carcinoma (LGACC) samples from patients. Methods: Genomic DNA was extracted from LGACC specimens. Whole exome sequencing (exome-seq) was conducted to screen for mutations. Capillary sequencing was performed to verify mutations in genes shared by multiple samples. Luciferase assays were used to evaluate functional consequences of NOTCH1 mutations. Results: The mutation profile of LGACC was complicated. The most frequently mutated gene observed (28.6%) was bromodomain PHD finger transcription factor (BPTF). No mutation was identified in common cancer genes such as TP53, KRAS, and BRAF. However, mutations predicted to be functionally severe were accumulated in the Notch signaling pathway including NOTCH1 and NOTCH2, of which mutations have been reported in head/neck adenoid cystic carcinoma (ACC). Of 14 LGACC samples, five samples carry mutations in Notch pathway genes. Capillary sequencing verified all the mutations in the two NOTCH genes identified by exome-seq. Compared to the wild-type NOTCH1, three frame shifting mutations and two missense mutations (C387W and L1600Q) increased luciferase activity approximately 10- to 25-fold. Conclusions: Major genomic mutation profiles in LGACC were uncovered by exome-seq. Although preliminary in nature, the Notch pathway could be a potential therapeutic target for LGACC.


Asunto(s)
Carcinoma Adenoide Quístico/genética , Exoma/genética , Neoplasias del Ojo/genética , Genes Relacionados con las Neoplasias/genética , Enfermedades del Aparato Lagrimal/genética , Receptor Notch1/genética , Receptor Notch2/genética , Western Blotting , ADN de Neoplasias/genética , Mutación del Sistema de Lectura , Genes Reporteros , Humanos , Mutación Missense , Plásmidos , Análisis de Secuencia de ADN
18.
Sci Rep ; 7(1): 3671, 2017 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-28623268

RESUMEN

Pharmacological levels of ascorbate have long been suggested as a potential treatment of cancer. However, we observed that EC50 of ascorbate was at a similar level for cultured healthy melanocytes and melanoma cells, suggesting a limit of pharmacological ascorbate in treating cancer. Loss of 5-hydroxymethylcytosine (5 hmC) is an epigenetic hallmark of cancer and ascorbate promotes 5 hmC generation by serving as a cofactor for TET methylcytosine dioxygenases. Our previous work demonstrated that ascorbate treatment at physiological level (100 µM) increased 5 hmC content in melanoma cells toward the level of healthy melanocytes. Here we show that 100 µM of ascorbate induced apoptosis in A2058 melanoma cells. RNA-seq analysis revealed that expression of the Clusterin (CLU) gene, which is related to apoptosis, was downregulated by ascorbate. The suppression of CLU was verified at transcript level in different melanoma cell lines, and at protein level in A2058 cells. The anti-apoptotic cytoplasmic CLU was decreased, while the pro-apoptotic nuclear CLU was largely maintained, after ascorbate treatment. These changes in CLU subcellular localization were also associated with Bax and caspases activation, Bcl-xL sequestration, and cytochrome c release. Taken together, this study establishes an impending therapeutic role of physiological ascorbate to potentiate apoptosis in melanoma.


Asunto(s)
Apoptosis/efectos de los fármacos , Ácido Ascórbico/farmacología , Clusterina/genética , Regulación de la Expresión Génica/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Perfilación de la Expresión Génica/métodos , Humanos , Melanoma/genética , Transcriptoma , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/metabolismo
19.
Horm Metab Res ; 49(8): 625-630, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28514806

RESUMEN

Epicardial adipose tissue (EAT) is an easily measurable visceral fat of the heart with unique anatomy, functionality, and transcriptome. EAT can serve as a therapeutic target for pharmaceutical agents targeting the fat. Glucagon-like peptide-1 (GLP-1) and GLP-2 analogues are newer drugs showing beneficial cardiovascular and metabolic effects. Whether EAT expresses GLP- 1 and 2 receptors (GLP-1R and GLP-2R) is unknown. RNA-seq analysis and quantitative real-time polymerase chain reaction (qRT-PCR) were performed to evaluate the presence of GLP-1R and GLP-2R in EAT and subcutaneous fat (SAT) obtained from 8 subjects with coronary artery disease and type 2 diabetes mellitus undergoing elective cardiac surgery. Immunofluorescence was also performed on EAT and SAT samples using Mab3f52 against GLP-1R. Our RNA-sequencing (RNA-seq) analysis showed that EAT expresses both GLP-1R and GLP-2R genes. qRT-PCR analysis confirmed that GLP-1R expression was low but detected by 2 different sets of intron-spanning primers. GLP-2R expression was detected in all patients and was found to be 5-fold higher than GLP-1R. The combination of accurately spliced reads from RNA-seq and successful amplification using intron-spanning primers indicates that both GLP-1R and GLP-2R are expressed in EAT. Immunofluorescence clearly showed that GLP-1R is present and more abundant in EAT than SAT. This is the first time that human EAT is found to express both GLP-1R and GLP-2R genes. Pharmacologically targeting EAT may induce beneficial cardiovascular and metabolic effects.


Asunto(s)
Tejido Adiposo/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Regulación de la Expresión Génica , Receptor del Péptido 1 Similar al Glucagón/biosíntesis , Receptor del Péptido 2 Similar al Glucagón/biosíntesis , Pericardio/metabolismo , Tejido Adiposo/patología , Diabetes Mellitus Tipo 2/patología , Femenino , Humanos , Masculino , Pericardio/patología
20.
J Med Genet ; 52(4): 256-61, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25612910

RESUMEN

BACKGROUND: Tibial pseudarthrosis is associated with neurofibromatosis type 1 (NF1) and there is wide clinical variability of the tibial dysplasia in NF1, suggesting the possibility of genetic modifiers. Double inactivation of NF1 is postulated to be necessary for the development of tibial pseudarthrosis, but tissue or cell of origin of the 'second hit' mutation remains unclear. METHODS: Exome sequencing of different sections of surgically resected NF1 tibial pseudarthrosis tissue was performed and compared to germline (peripheral blood). RESULTS: A germline NF1 splice site mutation (c.61-2A>T, p.L21 M68del) was identified from DNA extracted from peripheral blood. Exome sequencing of DNA extracted from tissue removed during surgery of the tibial pseudarthrosis showed a somatic mutation of NF1 (c.3574G>T, p.E1192*) in the normal germline allele. Further analysis of different regions of the tibial pseudarthrosis sample showed enrichment of the somatic mutation in the soft tissue within the pseudarthrosis site and absence of the somatic mutation in cortical bone. In addition, a germline variant in PTPN11 (c.1658C>T, p.T553M), a gene involved in the RAS signal transduction pathway was identified, although the clinical significance is unknown. CONCLUSIONS: Given that the NF1 somatic mutation was primarily detected in the proliferative soft tissue at the pseudarthrosis site, it is likely that the second hit occurred in mesenchymal progenitors from the periosteum. These results are consistent with a defect of differentiation, which may explain why the mutation is found in proliferative cells and not within cortical bone tissue, as the latter by definition contains mostly mature differentiated osteoblasts and osteocytes.


Asunto(s)
Genes de Neurofibromatosis 1 , Mutación , Neurofibromatosis 1/genética , Seudoartrosis/genética , Tibia/patología , Preescolar , Análisis Mutacional de ADN , Femenino , Humanos , Radiografía , Tibia/diagnóstico por imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...