Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Prog Lipid Res ; 96: 101290, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39094698

RESUMEN

Plants and algae play a crucial role in the earth's ecosystems. Through photosynthesis they convert light energy into chemical energy, capture CO2 and produce oxygen and energy-rich organic compounds. Photosynthetic organisms are primary producers and synthesize the essential omega 3 and omega 6 fatty acids. They have also unique and highly diverse complex lipids, such as glycolipids, phospholipids, triglycerides, sphingolipids and phytosterols, with nutritional and health benefits. Plant and algal lipids are useful in food, feed, nutraceutical, cosmeceutical and pharmaceutical industries but also for green chemistry and bioenergy. The analysis of plant and algal lipidomes represents a significant challenge due to the intricate and diverse nature of their composition, as well as their plasticity under changing environmental conditions. Optimization of analytical tools is crucial for an in-depth exploration of the lipidome of plants and algae. This review highlights how lipidomics analytical tools can be used to establish a complete mapping of plant and algal lipidomes. Acquiring this knowledge will pave the way for the use of plants and algae as sources of tailored lipids for both industrial and environmental applications. This aligns with the main challenges for society, upholding the natural resources of our planet and respecting their limits.

2.
Plant Physiol Biochem ; 207: 108365, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38266563

RESUMEN

The order of Cyanidiales comprises seven acido-thermophilic red microalgal species thriving in hot springs of volcanic origin characterized by extremely low pH, moderately high temperatures and the presence of high concentrations of sulphites and heavy metals that are prohibitive for most other organisms. Little is known about the physiological processes underlying the long-term adaptation of these extremophiles to such hostile environments. Here, we investigated the long-term adaptive responses of a red microalga Cyanidioschyzon merolae, a representative of Cyanidiales, to extremely high nickel concentrations. By the comprehensive physiological, microscopic and elemental analyses we dissected the key physiological processes underlying the long-term adaptation of this model extremophile to high Ni exposure. These include: (i) prevention of significant Ni accumulation inside the cells; (ii) activation of the photoprotective response of non-photochemical quenching; (iii) significant changes of the chloroplast ultrastructure associated with the formation of prolamellar bodies and plastoglobuli together with loosening of the thylakoid membranes; (iv) activation of ROS amelioration machinery; and (v) maintaining the efficient respiratory chain functionality. The dynamically regulated processes identified in this study are discussed in the context of the mechanisms driving the remarkable adaptability of C. merolae to extremely high Ni levels exceeding by several orders of magnitude those found in the natural environment of the microalga. The processes identified in this study provide a solid basis for the future investigation of the specific molecular components and pathways involved in the adaptation of Cyanidiales to the extremely high Ni concentrations.


Asunto(s)
Extremófilos , Microalgas , Níquel , Cloroplastos
3.
Artículo en Inglés | MEDLINE | ID: mdl-35270343

RESUMEN

The efficiency of the living biomass of the microalga Chlamydomonas moewusii in removing methylene blue dye is determined. The kinetics, equilibrium isotherms, and the effects on this process of the pH, contact time, and initial concentration of the dye are studied. Fourier transform infrared spectrometry and point of zero charge are used to characterize the biomass and explore the process. The maximum removal capacity derived from the Langmuir isotherm is 212.41 ± 4.55 mg/g after 7 h of contact time at pH 7. The removal process is rapid because kinetic studies revealed that the best fit of the data is with pseudo-third-order kinetics. The removal efficiency is dependent on the pH; as the pH increased, the efficiency is higher. These results show that the living biomass of this microalga is a very efficient biosorbent and therefore very suitable for the removal of methylene blue from aqueous solutions.


Asunto(s)
Chlamydomonas , Microalgas , Contaminantes Químicos del Agua , Adsorción , Biomasa , Concentración de Iones de Hidrógeno , Cinética , Azul de Metileno/análisis , Espectroscopía Infrarroja por Transformada de Fourier , Termodinámica , Contaminantes Químicos del Agua/análisis
4.
J Hazard Mater ; 369: 674-683, 2019 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-30826560

RESUMEN

Triclosan is an important emerging pollutant. It has become ubiquitous due to its incomplete elimination in municipal wastewater treatment plants causing serious environmental problems. Biomass from microorganisms as sorbent of pollutants can be an eco-friendly alternative for triclosan removal. In this work, the elimination of triclosan using biomass (dead and living) of the marine microalga Phaeodactylum tricornutum was characterized in cultures exposed to light and in a complex solution (seawater). Maximum removal capacity, isotherms, kinetics, FTIR characterization, pH effect and reuse were evaluated and discussed. Photodegradation of triclosan was also evaluated. Both biomasses showed similar effectiveness; around 100% of pollutant was eliminated when its concentration was 1 mg L-1 in only 3 h using a biomass concentration of 0.4 g L-1. A pseudo-second order model guided the biosorption process. Considering the photodegradation as a first-order process, the whole process (photodegradation + biosorption) was suitably modelled with pseudo-third order and Elovich kinetics. Biosorption increased with the decrease in pH. Temkin isotherm showed the best fit for the experimental data. Both biomasses showed good reuse after five cycles, losing only 7% in efficiency. P. tricornutum biomass is an attractive eco-material for triclosan elimination with low-cost and easy handling than other sorbents.


Asunto(s)
Antiinfecciosos Locales/aislamiento & purificación , Microalgas/química , Agua de Mar/química , Triclosán/aislamiento & purificación , Contaminantes Químicos del Agua/aislamiento & purificación , Biodegradación Ambiental , Biomasa , Concentración de Iones de Hidrógeno , Cinética , Fotólisis , Espectroscopía Infrarroja por Transformada de Fourier , Termodinámica
5.
Water Sci Technol ; 78(8): 1762-1771, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30500800

RESUMEN

Microalgal-bacteria consortia application on wastewater treatment has been widely studied, but a deeper comprehension of consortium interactions is still lacking. In particular, mixotrophic exploitation of organic compounds by microalgae affects gas (CO2 and O2) exchange between microalgae and bacteria, but it is not clear how environmental conditions may regulate algal metabolism. Using a respirometric-based protocol, we evaluated the combined effect of organic carbon and light intensity on oxygen production and consumption by C. protothecoides, and found that the chemical oxygen demand (COD) was not consumed when incident light increased. Batch experiments under different incident lights, with C. protothecoides alone and in consortium with activated sludge bacteria, confirmed the results obtained by respirometry. Continuous system experiments testing the combined effects of light intensity and residence time confirmed that, under limiting light, mixotrophy is preferred by C. protothecoides, and the nutrient (COD, N, P) removal capability of the consortium is enhanced.


Asunto(s)
Chlorella/fisiología , Luz , Microalgas , Eliminación de Residuos Líquidos/métodos , Bacterias , Biodegradación Ambiental , Biomasa , Carbono , Nitrógeno , Aguas Residuales
6.
J Hazard Mater ; 320: 315-325, 2016 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-27565856

RESUMEN

Due to its use, a large amount of Oxytetracycline (OTC) is released into water, which has a detrimental impact on aquatic ecosystems and human health. Although there are different physicochemical methods (mainly photodegradation) to remove OTC, there is increasing interest in the use of bioremediation. The sorption characteristics of OTC using living and dead biomass of the microalga Phaeodactylum tricornutum have been investigated in this study. Kinetics, isotherms and maximum elimination capacity were tested and discussed. Kinetic studies showed that the OTC removal by living biomass followed a sigmoidal model. However, the dead biomass followed a pseudo-first order model. The living biomass showed higher efficiency than the dead biomass with maximum sorption capacities of 29.18mgg-1 and 4.54mgg-1, respectively. Combination of living biomass and photodegradation under the culture conditions eliminated 13.2mgL-1 of OTC during 11h of culture and with an initial OTC concentration of 15mgL-1. With an initial OTC concentration of 2.5mgL-1, 97% of OTC was removed. This removal was mainly caused by bioremediation than by photodegradation. The results proved the potential practical application of the living P. tricornutum biomass for a low-cost and efficient removal of OTC from seawater.


Asunto(s)
Microalgas , Oxitetraciclina/aislamiento & purificación , Contaminantes Químicos del Agua/aislamiento & purificación , Biodegradación Ambiental , Biomasa , Cinética , Fotólisis , Agua de Mar , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA