Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 47(10): 5016-5037, 2019 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-30923829

RESUMEN

Histone H4 acetylation at Lysine 16 (H4K16ac) is a key epigenetic mark involved in gene regulation, DNA repair and chromatin remodeling, and though it is known to be essential for embryonic development, its role during adult life is still poorly understood. Here we show that this lysine is massively hyperacetylated in peripheral neutrophils. Genome-wide mapping of H4K16ac in terminally differentiated blood cells, along with functional experiments, supported a role for this histone post-translational modification in the regulation of cell differentiation and apoptosis in the hematopoietic system. Furthermore, in neutrophils, H4K16ac was enriched at specific DNA repeats. These DNA regions presented an accessible chromatin conformation and were associated with the cleavage sites that generate the 50 kb DNA fragments during the first stages of programmed cell death. Our results thus suggest that H4K16ac plays a dual role in myeloid cells as it not only regulates differentiation and apoptosis, but it also exhibits a non-canonical structural role in poising chromatin for cleavage at an early stage of neutrophil cell death.


Asunto(s)
Apoptosis , Diferenciación Celular , Cromatina/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Células Mieloides/metabolismo , Acetilación , Animales , Células Cultivadas , Cromatina/genética , Epigénesis Genética , Humanos , Ratones Endogámicos C57BL , Ratones Noqueados , Células Mieloides/citología , Procesamiento Proteico-Postraduccional , Transcripción Genética
2.
J Transl Med ; 17(1): 15, 2019 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-30626398

RESUMEN

BACKGROUND: Early life is a period of drastic epigenetic remodeling in which the epigenome is especially sensitive to extrinsic and intrinsic influence. However, the epigenome-wide dynamics of the DNA methylation changes that occur during this period have not been sufficiently characterized in longitudinal studies. METHODS: To this end, we studied the DNA methylation status of more than 750,000 CpG sites using Illumina MethylationEPIC arrays on 33 paired blood samples from 11 subjects at birth and at 5 and 10 years of age, then characterized the chromatin context associated with these loci by integrating our data with histone, chromatin-state and enhancer-element external datasets, and, finally, validated our results through bisulfite pyrosequencing in two independent longitudinal cohorts of 18 additional subjects. RESULTS: We found abundant DNA methylation changes (110,726 CpG sites) during the first lustrum of life, while far fewer alterations were observed in the subsequent 5 years (460 CpG sites). However, our analysis revealed persistent DNA methylation changes at 240 CpG sites, indicating that there are genomic locations of considerable epigenetic change beyond immediate birth. The chromatin context of hypermethylation changes was associated with repressive genomic locations and genes with developmental and cell signaling functions, while hypomethylation changes were linked to enhancer regions and genes with immunological and mRNA and protein metabolism functions. Significantly, our results show that genes that suffer simultaneous hyper- and hypomethylation are functionally distinct from exclusively hyper- or hypomethylated genes, and that enhancer-associated methylation is different in hyper- and hypomethylation scenarios, with hypomethylation being more associated to epigenetic changes at blood tissue-specific enhancer elements. CONCLUSIONS: These data show that epigenetic remodeling is dramatically reduced after the first 5 years of life. However, there are certain loci which continue to manifest DNA methylation changes, pointing towards a possible functionality beyond early development. Furthermore, our results deepen the understanding of the genomic context associated to hyper- or hypomethylation alterations during time, suggesting that hypomethylation of blood tissue-specific enhancer elements could be of importance in the establishment of functional states in blood tissue during early-life.


Asunto(s)
Metilación de ADN/genética , Genoma Humano , Niño , Preescolar , Cromatina/metabolismo , Islas de CpG/genética , Femenino , Humanos , Recién Nacido , Estudios Longitudinales , Masculino , Reproducibilidad de los Resultados
3.
Oncotarget ; 9(40): 25922-25934, 2018 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-29899831

RESUMEN

Ten-eleven translocation (TET) enzymes are frequently deregulated in cancer, but the underlying molecular mechanisms are still poorly understood. Here we report that TET2 shows frequent epigenetic alterations in human glioblastoma including DNA hypermethylation and hypo-hydroxymethylation, as well as loss of histone acetylation. Ectopic overexpression of TET2 regulated neural differentiation in glioblastoma cell lines and impaired tumor growth. Our results suggest that epigenetic dysregulation of TET2 plays a role in human glioblastoma.

4.
Hum Mol Genet ; 27(17): 3046-3059, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29878202

RESUMEN

Aberrant DNA hypermethylation is a hallmark of cancer although the underlying molecular mechanisms are still poorly understood. To study the possible role of 5-hydroxymethylcytosine (5hmC) in this process we analyzed the global and locus-specific genome-wide levels of 5hmC and 5-methylcytosine (5mC) in human primary samples from 12 non-tumoral brains and 53 gliomas. We found that the levels of 5hmC identified in non-tumoral samples were significantly reduced in gliomas. Strikingly, hypo-hydroxymethylation at 4627 (9.3%) CpG sites was associated with aberrant DNA hypermethylation and was strongly enriched in CpG island shores. The DNA regions containing these CpG sites were enriched in H3K4me2 and presented a different genuine chromatin signature to that characteristic of the genes classically aberrantly hypermethylated in cancer. As this 5mC gain is inversely correlated with loss of 5hmC and has not been identified with classical sodium bisulfite-based technologies, we conclude that our data identifies a novel 5hmC-dependent type of aberrant DNA hypermethylation in glioma.


Asunto(s)
5-Metilcitosina/análogos & derivados , Biomarcadores de Tumor/genética , Metilación de ADN , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Genoma Humano , Glioma/patología , 5-Metilcitosina/metabolismo , Estudios de Casos y Controles , Islas de CpG , Glioma/genética , Glioma/metabolismo , Humanos
5.
J Med Chem ; 61(15): 6518-6545, 2018 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-29953809

RESUMEN

Using knowledge- and structure-based approaches, we designed and synthesized reversible chemical probes that simultaneously inhibit the activity of two epigenetic targets, histone 3 lysine 9 methyltransferase (G9a) and DNA methyltransferases (DNMT), at nanomolar ranges. Enzymatic competition assays confirmed our design strategy: substrate competitive inhibitors. Next, an initial exploration around our hit 11 was pursued to identify an adequate tool compound for in vivo testing. In vitro treatment of different hematological neoplasia cell lines led to the identification of molecules with clear antiproliferative efficacies (GI50 values in the nanomolar range). On the basis of epigenetic functional cellular responses (levels of lysine 9 methylation and 5-methylcytosine), an acceptable therapeutic window (around 1 log unit) and a suitable pharmacokinetic profile, 12 was selected for in vivo proof-of-concept ( Nat. Commun. 2017 , 8 , 15424 ). Herein, 12 achieved a significant in vivo efficacy: 70% overall tumor growth inhibition of a human acute myeloid leukemia (AML) xenograft in a mouse model.


Asunto(s)
Antineoplásicos/farmacología , Metilasas de Modificación del ADN/antagonistas & inhibidores , Diseño de Fármacos , Inhibidores Enzimáticos/farmacología , N-Metiltransferasa de Histona-Lisina/antagonistas & inhibidores , Animales , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacocinética , Línea Celular Tumoral , Metilasas de Modificación del ADN/química , Metilasas de Modificación del ADN/metabolismo , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/farmacocinética , Antígenos de Histocompatibilidad/química , Antígenos de Histocompatibilidad/metabolismo , N-Metiltransferasa de Histona-Lisina/química , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Ratones , Simulación del Acoplamiento Molecular , Conformación Proteica , Ensayos Antitumor por Modelo de Xenoinjerto
6.
Epigenomics ; 10(7): 903-923, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29620943

RESUMEN

AIM: Epigenetic regulation plays an important role in cellular development and differentiation. A detailed map of the DNA methylation dynamics that occur during cell differentiation would contribute to decipher the molecular networks governing cell fate commitment. METHODS: Illumina MethylationEPIC BeadChip platform was used to describe the genome-wide DNA methylation changes observed throughout hematopoietic maturation by analyzing multiple myeloid and lymphoid hematopoietic cell types. RESULTS: We identified a plethora of DNA methylation changes that occur during human hematopoietic differentiation. We observed that T lymphocytes display substantial enhancement of de novo CpG hypermethylation as compared with other hematopoietic cell populations. T-cell-specific hypermethylated regions were strongly associated with open chromatin marks and enhancer elements, as well as binding sites of specific key transcription factors involved in hematopoietic differentiation, such as PU.1 and TAL1. CONCLUSION: These results provide novel insights into the role of DNA methylation at enhancer elements in T-cell development.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Hematopoyesis/genética , Células Madre Hematopoyéticas/metabolismo , Linfocitos T/metabolismo , Sitios de Unión , Islas de CpG , Elementos de Facilitación Genéticos , Humanos , Regiones Promotoras Genéticas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...