Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Clin Epigenetics ; 15(1): 133, 2023 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-37612734

RESUMEN

BACKGROUND: Promoter hypermethylation of tumour suppressor genes is frequently observed during the malignant transformation of colorectal cancer (CRC). However, whether this epigenetic mechanism is functional in cancer or is a mere consequence of the carcinogenic process remains to be elucidated. RESULTS: In this work, we performed an integrative multi-omic approach to identify gene candidates with strong correlations between DNA methylation and gene expression in human CRC samples and a set of 8 colon cancer cell lines. As a proof of concept, we combined recent CRISPR-Cas9 epigenome editing tools (dCas9-TET1, dCas9-TET-IM) with a customized arrayed gRNA library to modulate the DNA methylation status of 56 promoters previously linked with strong epigenetic repression in CRC, and we monitored the potential functional consequences of this DNA methylation loss by means of a high-content cell proliferation screen. Overall, the epigenetic modulation of most of these DNA methylated regions had a mild impact on the reactivation of gene expression and on the viability of cancer cells. Interestingly, we found that epigenetic reactivation of RSPO2 in the tumour context was associated with a significant impairment in cell proliferation in p53-/- cancer cell lines, and further validation with human samples demonstrated that the epigenetic silencing of RSPO2 is a mid-late event in the adenoma to carcinoma sequence. CONCLUSIONS: These results highlight the potential role of DNA methylation as a driver mechanism of CRC and paves the way for the identification of novel therapeutic windows based on the epigenetic reactivation of certain tumour suppressor genes.


Asunto(s)
Neoplasias del Colon , Metilación de ADN , Humanos , Desmetilación del ADN , Epigénesis Genética , Carcinogénesis , Oxigenasas de Función Mixta , Proteínas Proto-Oncogénicas
2.
Mol Oncol ; 17(9): 1726-1743, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37357610

RESUMEN

Glioblastoma (GBM) is one of the most aggressive types of cancer and exhibits profound genetic and epigenetic heterogeneity, making the development of an effective treatment a major challenge. The recent incorporation of molecular features into the diagnosis of patients with GBM has led to an improved categorization into various tumour subtypes with different prognoses and disease management. In this work, we have exploited the benefits of genome-wide multi-omic approaches to identify potential molecular vulnerabilities existing in patients with GBM. Integration of gene expression and DNA methylation data from both bulk GBM and patient-derived GBM stem cell lines has revealed the presence of major sources of GBM variability, pinpointing subtype-specific tumour vulnerabilities amenable to pharmacological interventions. In this sense, inhibition of the AP-1, SMAD3 and RUNX1/RUNX2 pathways, in combination or not with the chemotherapeutic agent temozolomide, led to the subtype-specific impairment of tumour growth, particularly in the context of the aggressive, mesenchymal-like subtype. These results emphasize the involvement of these molecular pathways in the development of GBM and have potential implications for the development of personalized therapeutic approaches.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/metabolismo , Metilación de ADN/genética , Neoplasias Encefálicas/patología , Multiómica , Expresión Génica
3.
Sci Rep ; 13(1): 8293, 2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-37217546

RESUMEN

Obesity is associated with adipose tissue dysfunction through the differentiation and expansion of pre-adipocytes to adipocytes (hyperplasia) and/or increases in size of pre-existing adipocytes (hypertrophy). A cascade of transcriptional events coordinates the differentiation of pre-adipocytes into fully differentiated adipocytes; the process of adipogenesis. Although nicotinamide N-methyltransferase (NNMT) has been associated with obesity, how NNMT is regulated during adipogenesis, and the underlying regulatory mechanisms, remain undefined. In present study we used genetic and pharmacological approaches to elucidate the molecular signals driving NNMT activation and its role during adipogenesis. Firstly, we demonstrated that during the early phase of adipocyte differentiation NNMT is transactivated by CCAAT/Enhancer Binding Protein beta (CEBPB) in response to glucocorticoid (GC) induction. We found that Nnmt knockout, using CRISPR/Cas9 approach, impaired terminal adipogenesis by influencing the timing of cellular commitment and cell cycle exit during mitotic clonal expansion, as demonstrated by cell cycle analysis and RNA sequencing experiments. Biochemical and computational methods showed that a novel small molecule, called CC-410, stably binds to and highly specifically inhibits NNMT. CC-410 was, therefore, used to modulate protein activity during pre-adipocyte differentiation stages, demonstrating that, in line with the genetic approach, chemical inhibition of NNMT at the early stages of adipogenesis impairs terminal differentiation by deregulating the GC network. These congruent results conclusively demonstrate that NNMT is a key component of the GC-CEBP axis during the early stages of adipogenesis and could be a potential therapeutic target for both early-onset obesity and glucocorticoid-induced obesity.


Asunto(s)
Adipogénesis , Nicotinamida N-Metiltransferasa , Ratones , Animales , Adipogénesis/genética , Nicotinamida N-Metiltransferasa/metabolismo , Glucocorticoides/uso terapéutico , Diferenciación Celular , Transducción de Señal , Obesidad/genética , Obesidad/tratamiento farmacológico , Células 3T3-L1 , PPAR gamma/metabolismo
4.
Anal Chem ; 94(18): 6760-6770, 2022 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35467835

RESUMEN

The accurate detection of nucleic acids from certain biological pathogens is critical for the diagnosis of human diseases. However, amplified detection of RNA molecules from a complex sample by direct detection of RNA/DNA hybrids remains a challenge. Here, we show that type IIS endonuclease FokI is able to digest DNA duplexes and DNA/RNA hybrids when assisted by a dumbbell-like fluorescent sensing oligonucleotide. As proof of concept, we designed a battery of sensing oligonucleotides against specific regions of the SARS-CoV-2 genome and interrogated the role of FokI relaxation as a potential nicking enzyme for fluorescence signal amplification. FokI-assisted digestion of SARS-CoV-2 probes increases the detection signal of ssDNA and RNA molecules and decreases the limit of detection more than 3.5-fold as compared to conventional molecular beacon approaches. This cleavage reaction is highly specific to its target molecules, and no detection of other highly related B-coronaviruses was observed in the presence of complex RNA mixtures. In addition, the FokI-assisted reaction has a high multiplexing potential, as the combined detection of different viral RNAs, including different SARS-CoV-2 variants, was achieved in the presence of multiple combinations of fluorophores and sensing oligonucleotides. When combined with isothermal rolling circle amplification technologies, FokI-assisted digestion reduced the detection time of SARS-CoV-2 in COVID-19-positive human samples with adequate sensitivity and specificity compared to conventional reverse transcription polymerase chain reaction approaches, highlighting the potential of FokI-assisted signal amplification as a valuable sensing mechanism for the detection of human pathogens.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , ADN , Digestión , Humanos , Técnicas de Amplificación de Ácido Nucleico , Oligonucleótidos , ARN Viral/genética , SARS-CoV-2/genética , Sensibilidad y Especificidad
5.
Front Cell Dev Biol ; 9: 671838, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34447744

RESUMEN

Glioblastoma multiforme (GBM) is the most common and aggressive type of brain tumor in adulthood. Epigenetic mechanisms are known to play a key role in GBM although the involvement of histone methyltransferase KMT5B and its mark H4K20me2 has remained largely unexplored. The present study shows that DNA hypermethylation and loss of DNA hydroxymethylation is associated with KMT5B downregulation and genome-wide reduction of H4K20me2 levels in a set of human GBM samples and cell lines as compared with non-tumoral specimens. Ectopic overexpression of KMT5B induced tumor suppressor-like features in vitro and in a mouse tumor xenograft model, as well as changes in the expression of several glioblastoma-related genes. H4K20me2 enrichment was found immediately upstream of the promoter regions of a subset of deregulated genes, thus suggesting a possible role for KMT5B in GBM through the epigenetic modulation of key target cancer genes.

6.
J Clin Invest ; 131(13)2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33983906

RESUMEN

B cell acute lymphoblastic leukemia (B-ALL) is the most common childhood cancer. As predicted by its prenatal origin, infant B-ALL (iB-ALL) shows an exceptionally silent DNA mutational landscape, suggesting that alternative epigenetic mechanisms may substantially contribute to its leukemogenesis. Here, we have integrated genome-wide DNA methylome and transcriptome data from 69 patients with de novo MLL-rearranged leukemia (MLLr) and non-MLLr iB-ALL leukemia uniformly treated according to the Interfant-99/06 protocol. iB-ALL methylome signatures display a plethora of common and specific alterations associated with chromatin states related to enhancer and transcriptional control in normal hematopoietic cells. DNA methylation, gene expression, and gene coexpression network analyses segregated MLLr away from non-MLLr iB-ALL and identified a coordinated and enriched expression of the AP-1 complex members FOS and JUN and RUNX factors in MLLr iB-ALL, consistent with the significant enrichment of hypomethylated CpGs in these genes. Integrative methylome-transcriptome analysis identified consistent cancer cell vulnerabilities, revealed a robust iB-ALL-specific gene expression-correlating dmCpG signature, and confirmed an epigenetic control of AP-1 and RUNX members in reshaping the molecular network of MLLr iB-ALL. Finally, pharmacological inhibition or functional ablation of AP-1 dramatically impaired MLLr-leukemic growth in vitro and in vivo using MLLr-iB-ALL patient-derived xenografts, providing rationale for new therapeutic avenues in MLLr-iB-ALL.


Asunto(s)
Reordenamiento Génico de Linfocito B , N-Metiltransferasa de Histona-Lisina/genética , Proteína de la Leucemia Mieloide-Linfoide/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Animales , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Islas de CpG , Metilación de ADN , Epigénesis Genética , Epigenoma , Perfilación de la Expresión Génica , Regulación Leucémica de la Expresión Génica , Humanos , Lactante , Ratones , Ratones Endogámicos NOD , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patología , Factor de Transcripción AP-1/antagonistas & inhibidores , Factor de Transcripción AP-1/genética , Factor de Transcripción AP-1/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
7.
Mol Biol Evol ; 38(8): 3415-3435, 2021 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-33871658

RESUMEN

Aging and cancer are two interrelated processes, with aging being a major risk factor for the development of cancer. Parallel epigenetic alterations have been described for both, although differences, especially within the DNA hypomethylation scenario, have also been recently reported. Although many of these observations arise from the use of mouse models, there is a lack of systematic comparisons of human and mouse epigenetic patterns in the context of disease. However, such comparisons are significant as they allow to establish the extent to which some of the observed similarities or differences arise from pre-existing species-specific epigenetic traits. Here, we have used reduced representation bisulfite sequencing to profile the brain methylomes of young and old, tumoral and nontumoral brain samples from human and mouse. We first characterized the baseline epigenomic patterns of the species and subsequently focused on the DNA methylation alterations associated with cancer and aging. Next, we described the functional genomic and epigenomic context associated with the alterations, and finally, we integrated our data to study interspecies DNA methylation levels at orthologous CpG sites. Globally, we found considerable differences between the characteristics of DNA methylation alterations in cancer and aging in both species. Moreover, we describe robust evidence for the conservation of the specific cancer and aging epigenomic signatures in human and mouse. Our observations point toward the preservation of the functional consequences of these alterations at multiple levels of genomic regulation. Finally, our analyses reveal a role for the genomic context in explaining disease- and species-specific epigenetic traits.


Asunto(s)
Envejecimiento/genética , Metilación de ADN , Epigénesis Genética , Epigenoma , Neoplasias/genética , Animales , Evolución Biológica , Islas de CpG , Humanos , Ratones , Especificidad de la Especie
8.
Blood ; 137(7): 994-999, 2021 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-32915956
9.
Int J Cancer ; 146(2): 373-387, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31211412

RESUMEN

Loss of 5-hydroxymethylcytosine (5hmC) has been associated with mutations of the ten-eleven translocation (TET) enzymes in several types of cancer. However, tumors with wild-type TET genes can also display low 5hmC levels, suggesting that other mechanisms involved in gene regulation might be implicated in the decline of this epigenetic mark. Here we show that DNA hypermethylation and loss of DNA hydroxymethylation, as well as a marked reduction of activating histone marks in the TET3 gene, impair TET3 expression and lead to a genome-wide reduction in 5hmC levels in glioma samples and cancer cell lines. Epigenetic drugs increased expression of TET3 in glioblastoma cells and ectopic overexpression of TET3 impaired in vitro cell growth and markedly reduced tumor formation in immunodeficient mice models. TET3 overexpression partially restored the genome-wide patterns of 5hmC characteristic of control brain samples in glioblastoma cell lines, while elevated TET3 mRNA levels were correlated with better prognosis in glioma samples. Our results suggest that epigenetic repression of TET3 might promote glioblastoma tumorigenesis through the genome-wide alteration of 5hmC.


Asunto(s)
Neoplasias Encefálicas/genética , Carcinogénesis/genética , Dioxigenasas/genética , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Glioblastoma/genética , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Animales , Biopsia , Neoplasias Encefálicas/mortalidad , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Metilación de ADN , Regulación hacia Abajo , Glioblastoma/mortalidad , Glioblastoma/patología , Código de Histonas/genética , Humanos , Ratones , Pronóstico , ARN Mensajero/metabolismo , Análisis de Supervivencia , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...