Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros










Intervalo de año de publicación
2.
Sci Rep ; 13(1): 13120, 2023 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-37573416

RESUMEN

The growing interest in microRNAs (miRNAs) over recent years has led to their characterization in numerous organisms. However, there is currently a lack of data available on miRNAs from triatomine bugs (Reduviidae: Triatominae), which are the vectors of the protozoan parasite Trypanosoma cruzi, the causative agent of Chagas disease. A comprehensive understanding of the molecular biology of vectors provides new insights into insect-host interactions and insect control approaches, which are key methods to prevent disease incidence in endemic areas. In this work, we describe the miRNome profiles from gut, hemolymph, and salivary gland tissues of the Rhodnius prolixus triatomine. Small RNA sequencing data revealed abundant expression of miRNAs, along with tRNA- and rRNA-derived fragments. Fifty-two mature miRNAs, previously reported in Ecdysozoa, were identified, including 39 ubiquitously expressed in the three tissues. Additionally, 112, 73, and 78 novel miRNAs were predicted in the gut, hemolymph, and salivary glands, respectively. In silico prediction showed that the top eight most highly expressed miRNAs from salivary glands potentially target human blood-expressed genes, suggesting that R. prolixus may modulate the host's gene expression at the bite site. This study provides the first characterization of miRNAs in a Triatominae species, shedding light on the role of these crucial regulatory molecules.


Asunto(s)
Enfermedad de Chagas , MicroARNs , Rhodnius , Triatominae , Trypanosoma cruzi , Animales , Humanos , Rhodnius/genética , Rhodnius/parasitología , MicroARNs/genética , Insectos Vectores/genética , Insectos Vectores/parasitología , Enfermedad de Chagas/parasitología , Trypanosoma cruzi/genética , Triatominae/parasitología
3.
Biochimie ; 212: 143-152, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37088408

RESUMEN

Zika virus (ZIKV) infection is associated with severe neurological disorders and congenital malformation. Despite efforts to eradicate the disease, there is still neither vaccine nor approved drugs to treat ZIKV infection. The NS2B-NS3 protease is a validated drug target since it is essential to polyprotein virus maturation. In the present study, we describe an experimental screening of 2,320 compounds from the chemical library of the Muséum National d'Histoire Naturelle of Paris on ZIKV NS2B-NS3 protease. A total of 96 hits were identified with 90% or more of inhibitory activity at 10 µM. Amongst the most active compounds, five were analyzed for their inhibitory mechanisms by kinetics assays and computational approaches such as molecular docking. 2-(3-methoxyphenoxy) benzoic acid (compound 945) show characteristics of a competitive inhibition (Ki = 0.49 µM) that was corroborated by its molecular docking at the active site of the NS2B-NS3 protease. Taxifolin (compound 2292) behaves as an allosteric inhibitor whereas 3,8,9-trihydroxy-2-methyl-1H-phenalen-1-one (compound 128), harmol (compound 368) and anthrapurpurin (compound 1499) show uncompetitive inhibitions. These new NS2B-NS3 protease inhibitors are valuable hits to further hit-to-lead optimization.


Asunto(s)
Infección por el Virus Zika , Virus Zika , Humanos , Simulación del Acoplamiento Molecular , Proteínas no Estructurales Virales/química , Serina Endopeptidasas/química , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/química , Péptido Hidrolasas , Antivirales/farmacología , Antivirales/química
4.
Int J Mol Sci ; 25(1)2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38203289

RESUMEN

Chagas disease is a neglected infectious disease caused by the protozoan Trypanosoma cruzi, primarily transmitted by triatomine vectors, and it threatens approximately seventy-five million people worldwide. This parasite undergoes a complex life cycle, transitioning between hosts and shifting from extracellular to intracellular stages. To ensure its survival in these diverse environments, T. cruzi undergoes extreme morphological and molecular changes. The metacyclic trypomastigote (MT) form, which arises from the metacyclogenesis (MTG) process in the triatomine hindgut, serves as a crucial link between the insect and human hosts and can be considered the starting point of Chagas disease. This review provides an overview of the current knowledge regarding the parasite's life cycle, molecular pathways, and mechanisms involved in metabolic and morphological adaptations during MTG, enabling the MT to evade the immune system and successfully infect human cells.


Asunto(s)
Enfermedad de Chagas , Trypanosoma cruzi , Humanos
5.
J Proteomics ; 236: 104118, 2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33486016

RESUMEN

Plasmodium blood stages, responsible for human to vector transmission, termed gametocytes, are the precursor cells that develop into gametes in the mosquito. Male gametogenesis works as a bottleneck for the parasite life cycle, where, during a peculiar and rapid exflagellation, a male gametocyte produces 8 intracellular axonemes that generate by budding 8 motile gametes. Understanding the molecular mechanisms of gametogenesis is key to design strategies for controlling malaria transmission. In the rodent P. berghei, the microtubule-based motor kinesin-8B (PbKIN8B) is essential for flagellum assembly during male gametogenesis and its gene disruption impacts on completion of the parasitic life cycle. In efforts to improve our knowledge about male gametogenesis, we performed an iTRAQ-based quantitative proteomic comparison of P. berghei mutants with disrupted kinesin-8B gene (ΔPbkin8B) and wild type parasites. During the 15 min of gametogenesis, ΔPbkin8B parasites exhibited important motor protein dysregulation that suggests an essential role of PbKIN8B for the correct interaction or integration of axonemal proteins within the growing axoneme. The energy metabolism of ΔPbkin8B mutants was further affected, as well as the response to stress proteins, protein synthesis, as well as chromatin organisation and DNA processes, although endomitoses seemed to occur. SIGNIFICANCE: Malaria continues to be a global scourge, mainly in subtropical and tropical areas. The disease is caused by parasites from the Plasmodium genus. Plasmodium life cycle alternates between female Anopheles mosquitoes and vertebrate hosts through bites. Gametocytes are the parasite blood forms responsible for transmission from vertebrates to vectors. Inside the mosquito midgut, after stimulation, male and female gametocytes transform into gametes resulting in fertilization. During male gametogenesis, one gametocyte generates eight intracytoplasmic axonemes that generate, by budding, flagellated motile gametes involving a process termed exflagellation. Sexual development has a central role in ensuring malaria transmission. However, molecular data on male gametogenesis and particularly on intracytoplasmic axoneme assembly are still lacking. Since rodent malaria parasites permit the combination of in vivo and in vitro experiments and reverse genetic studies, our group investigated the molecular events in rodent P. berghei gametogenesis. The P. berghei motor ATPase kinesin-8B is proposed as an important component for male gametogenesis. We generated Pbkin8B gene-disrupted gametocytes (ΔPbkin8B) that were morphologically similar to the wild- type (WT) parasites. However, in mutants, male gametogenesis is impaired, male gametocytes are disabled in their ability to assemble axonemes and to exflagellate to release gametes, reducing fertilization drastically. Using a comparative quantitative proteomic analysis, we associated the nonfunctional axoneme of the mutants with the abnormal differential expression of proteins essential to axoneme organisation and stability. We also observed a differential dysregulation of proteins involved in protein biosynthesis and degradation, chromatin organisation and DNA processes in ΔPbkin8B parasites, although DNA condensation, mitotic spindle formation and endomitoses seem to occur. This is the first functional proteomic study of a kinesin gene-disrupted Plasmodium parasite providing new insights into Plasmodium male gametogenesis.


Asunto(s)
Cinesinas , Plasmodium berghei , Animales , Femenino , Gametogénesis/genética , Cinesinas/genética , Masculino , Mosquitos Vectores , Plasmodium berghei/genética , Proteómica , Proteínas Protozoarias/genética
6.
Front Cell Infect Microbiol ; 11: 798924, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35047420

RESUMEN

Triatomines have evolved salivary glands that produce versatile molecules with various biological functions, including those leading their interactions with vertebrate hosts' hemostatic and immunological systems. Here, using high-throughput transcriptomics and proteomics, we report the first sialome study on the synanthropic triatomine Triatoma sordida. As a result, 57,645,372 reads were assembled into 26,670 coding sequences (CDS). From these, a total of 16,683 were successfully annotated. The sialotranscriptomic profile shows Lipocalin as the most abundant protein family within putative secreted transcripts. Trialysins and Kazal-type protease inhibitors have high transcript levels followed by ubiquitous protein families and enzyme classes. Interestingly, abundant trialysin and Kazal-type members are highlighted in this triatomine sialotranscriptome. Furthermore, we identified 132 proteins in T. sordida salivary gland soluble extract through LC-MS/MS spectrometry. Lipocalins, Hemiptera specific families, CRISP/Antigen-5 and Kazal-type protein inhibitors proteins were identified. Our study provides a comprehensive description of the transcript and protein compositions of the salivary glands of T. sordida. It significantly enhances the information in the Triatominae sialome databanks reported so far, improving the understanding of the vector's biology, the hematophagous behaviour, and the Triatominae subfamily's evolution.


Asunto(s)
Triatoma , Triatominae , Animales , Cromatografía Liquida , Humanos , Insectos Vectores , Espectrometría de Masas en Tándem , Triatoma/genética
7.
Materials (Basel) ; 13(23)2020 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-33276688

RESUMEN

Chagas is a neglected tropical disease caused by Trypanosoma cruzi, and affects about 25 million people worldwide. N, N'-Squaramide 17 (S) is a trypanocidal compound with relevant in vivo effectiveness. Here, we produced, characterized, and evaluated cytotoxic and trypanocidal effects of macrophage-mimetic liposomes from lipids extracted of RAW 264.7 cells to release S. As results, the average hydrodynamic diameter and Zeta potential of mimetic lipid membranes containing S (MLS) was 196.5 ± 11 nm and -61.43 ± 2.3 mV, respectively. Drug entrapment efficiency was 73.35% ± 2.05%. After a 72 h treatment, MLS was observed to be active against epimastigotes in vitro (IC50 = 15.85 ± 4.82 µM) and intracellular amastigotes (IC50 = 24.92 ± 4.80 µM). Also, it induced low cytotoxicity with CC50 of 1199.50 ± 1.22 µM towards VERO cells and of 1973.97 ± 5.98 µM in RAW 264.7. MLS also induced fissures in parasite membrane with a diameter of approximately 200 nm in epimastigotes. MLS showed low cytotoxicity in mammalian cells and high trypanocidal activity revealing this nanostructure a promising candidate for the development of Chagas disease treatment.

8.
Scientometrics ; 125(3): 2745-2772, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33071387

RESUMEN

The study of international collaborations can help in understanding the benefits of such relationships and aid in developing national financing policies. In this paper, the international collaboration of Brazilian scientists was studied using SciVal® and Incites® database, looking at its effect on the universities, financing agencies and different areas of knowledge and research topic clusters. Cluster and principal component analyses of scientometric data were carried out. While the results confirmed known knowledge that international collaboration increases impact, this study shows that Brazilian researchers are contributing to prominent research topics worldwide, in all areas of knowledge. This finding is contrary to several points of view that identify Brazil as a regional and not an international partner in science. Important also to note the impact of Brazilian authors in international collaboration that is well above the world mean. The collaboration of Brazil with foreign partners brings benefits for both sides, creating the opportunity of Brazilian research access to financing from international agencies. Increases in measures of impact are also seen for both sides. Foreign partners likewise benefit from higher impact factors in the same topic cluster, when collaborating with Brazilian partners. Publishing open access in high impact journals is fundamental for maintaining Brazilian science at the forefront.

9.
Artículo en Inglés | MEDLINE | ID: mdl-32984079

RESUMEN

Triatomines are hematophagous insects that transmit Trypanosoma cruzi, the etiological agent of Chagas disease. This neglected tropical disease represents a global health issue as it is spreading worldwide. The saliva of Triatominae contains miscellaneous proteins crucial for blood feeding acquisition, counteracting host's hemostasis while performing vasodilatory, anti-platelet and anti-coagulant activities, besides modulating inflammation and immune responses. Since a set of biological processes are mediated by protein complexes, here, the sialocomplexomes (salivary protein complexes) of five species of Triatominae were studied to explore the protein-protein interaction networks. Salivary multiprotein complexes from Triatoma infestans, Triatoma dimidiata, Dipetalogaster maxima, Rhodnius prolixus, and Rhodnius neglectus were investigated by Blue-Native- polyacrylamide gel electrophoresis coupled with liquid chromatography tandem mass spectrometry. More than 70 protein groups, uncovering the landscape of the Triatominae salivary interactome, were revealed. Triabin, actin, thioredoxin peroxidase and an uncharacterized protein were identified in sialocomplexes of the five species, while hexamerin, heat shock protein and histone were identified in sialocomplexes of four species. Salivary proteins related to triatomine immunity as well as those required during blood feeding process such as apyrases, antigen 5, procalins, and nitrophorins compose different complexes. Furthermore, unique proteins for each triatomine species were revealed. This study represents the first Triatominae sialocomplexome reference to date and shows that the approach used is a reliable tool for the analysis of Triatominae salivary proteins assembled into complexes.


Asunto(s)
Triatoma , Triatominae , Trypanosoma cruzi , Animales , Insectos Vectores , Proteómica , Saliva
10.
Biochimie ; 167: 207-216, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31628976

RESUMEN

Oligopeptidases B (OPB) belong to the S9 prolyl oligopeptidase family and are expressed in prokaryotes, some eukaryotes and in some higher plants. OPB is not found in any of the mammalian genomes available to date. Evidences indicate that OPB participates in the infections caused by trypanosomatids Trypanosoma cruzi, Leishmania spp. and Trypanosoma brucei spp and therefore it is considered an important virulence factor. Trypanosomatids from the genera Leishmania and Trypanosoma also present other OPB, named OPB2. A more accurate investigation of trypanosomatid OPB sequences brought attention to what could be a third OPB sequence (OPB3). This review aims to discuss biochemical, structural, phylogenetic and functional properties of OPB and its potential as target for the development of drugs against Chagas disease, leishmaniasis and African trypanosomiasis.


Asunto(s)
Leishmania/enzimología , Serina Endopeptidasas , Trypanosoma brucei brucei/enzimología , Trypanosoma cruzi/enzimología , Factores de Virulencia , Animales , Enfermedad de Chagas/parasitología , Humanos , Leishmaniasis/parasitología , Mamíferos , Proteínas Protozoarias/química , Proteínas Protozoarias/inmunología , Serina Endopeptidasas/química , Serina Endopeptidasas/clasificación , Serina Endopeptidasas/inmunología , Tripanosomiasis Africana/parasitología , Factores de Virulencia/química , Factores de Virulencia/clasificación , Factores de Virulencia/inmunología
11.
Chem Biodivers ; 16(5): e1800468, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30803133

RESUMEN

In this work, we evaluated the ovicidal activity and the deleterious effects of cashew (Anacardium occidentale) nut shell oil and its fractions on the development of Musca domestica and Chrysomya megacephala, important vectors of several diseases. The insecticidal effects of this plant were also measured on the first and second instar larvae of Anticarsia gemmatalis and Spodoptera frugiperda, soy and maize pests, respectively. The fly eggs and the crop pest insect larvae were exposed to the cashew (Anacardium occidentale) nut shell liquid (CNSL) and its fractions: technical CNSL, anacardic acid, cardanol and cardol. The results show that the cardol fraction, for both species of flies, presented the lowest lethal concentration with LC50 of 80.4 mg/L for M. domestica and 90.2 mg/L for C. megacephala. For the mortality of the larvae of A. gemmatalis and S. frugiperda, the most effective fraction was anacardic acid with LC50 of 295.1 mg/L and 318.4 mg/L, respectively. In all species, the mortality rate of the commercial compounds (cypermethrin 600 mg/L and temephos 2 mg/L) was higher than that of the evaluated compounds. Despite this, the results obtained suggest their potential in field trials, once the fractions of A. occidentale presented high mortality at low lethal concentrations in laboratory conditions, with the possibility of integrated use in the control of disease vectors and agricultural pests, employing ecofriendly compounds.


Asunto(s)
Anacardium/química , Insecticidas/química , Aceites de Plantas/química , Ácidos Anacárdicos/química , Ácidos Anacárdicos/aislamiento & purificación , Ácidos Anacárdicos/toxicidad , Anacardium/metabolismo , Animales , Dípteros/efectos de los fármacos , Dípteros/crecimiento & desarrollo , Moscas Domésticas/efectos de los fármacos , Insecticidas/aislamiento & purificación , Insecticidas/toxicidad , Larva/efectos de los fármacos , Dosificación Letal Mediana , Nueces/química , Nueces/metabolismo , Óvulo/efectos de los fármacos , Fenoles/química , Fenoles/aislamiento & purificación , Fenoles/toxicidad , Aceites de Plantas/metabolismo , Spodoptera/efectos de los fármacos , Spodoptera/crecimiento & desarrollo
12.
Environ Sci Pollut Res Int ; 26(6): 5514-5523, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30610586

RESUMEN

Aedes aegypti and Culex quinquefasciatus are vectors of diseases that constitute public health problems. The discovery of products capable of inhibiting their development which are less harmful to the environment would have a huge impact on vector control. Here, natural cashew nut shell liquid (CNSL), technical CNSL, anacardic acid, cardanol, and cardol were isolated from Anacardium occidentale and evaluated for larvicidal and pupicidal activity against Ae. aegypti and Cx. quinquefasciatus under laboratory and field conditions. The activities of phenol, resorcinol, salicylic acid, and pentadecane, commercial chemicals similar in structure to nut shell derivatives, were also evaluated. All of the fractions extracted from A. occidentale oil exerted larvicidal effects against both mosquito species (LC50 5.4-22.6 mg/L), and two of the aforementioned were effective against pupae (LC50 90.8-109.7 mg/L). Of all the fractions tested, cardol demonstrated the strongest larvicidal and pupicidal effects and presented the most prolonged residual activity against the larvae and pupae of Ae. aegypti and Cx. quinquefasciatus under field conditions. This study suggests that A. occidentale nut shell derivatives are sustainable and promising candidates for the development of novel insecticides to overcome the problem of harmful chemical insecticides.


Asunto(s)
Anacardium/química , Arbovirus , Insecticidas/toxicidad , Mosquitos Vectores/efectos de los fármacos , Extractos Vegetales/toxicidad , Aedes , Ácidos Anacárdicos , Animales , Anopheles , Culex , Larva , Dosificación Letal Mediana , Lípidos , Mosquitos Vectores/virología , Fenoles , Pupa , Resorcinoles
13.
Artículo en Inglés | MEDLINE | ID: mdl-30505806

RESUMEN

Triatominae bugs are the vectors of Chagas disease, a major concern to public health especially in Latin America, where vector-borne Chagas disease has undergone resurgence due mainly to diminished triatomine control in many endemic municipalities. Although the majority of Triatominae species occurs in the Americas, species belonging to the genus Linshcosteus occur in India, and species belonging to the Triatoma rubrofasciata complex have been also identified in Africa, the Middle East, South-East Asia, and in the Western Pacific. Not all of Triatominae species have been found to be infected with Trypanosoma cruzi, but the possibility of establishing vector transmission to areas where Chagas disease was previously non-endemic has increased with global population mobility. Additionally, the worldwide distribution of triatomines is concerning, as they are able to enter in contact and harbor other pathogens, leading us to wonder if they would have competence and capacity to transmit them to humans during the bite or after successful blood feeding, spreading other infectious diseases. In this review, we searched the literature for infectious agents transmitted to humans by Triatominae. There are reports suggesting that triatomines may be competent vectors for pathogens such as Serratia marcescens, Bartonella, and Mycobacterium leprae, and that triatomine infection with other microrganisms may interfere with triatomine-T. cruzi interactions, altering their competence and possibly their capacity to transmit Chagas disease.


Asunto(s)
Bacterias , Enfermedades Transmisibles/transmisión , Insectos Vectores , Triatominae , Trypanosoma , Virus , Animales , Bacterias/patogenicidad , Bartonella , Enfermedad de Chagas/epidemiología , Enfermedad de Chagas/parasitología , Enfermedad de Chagas/transmisión , Humanos , Insectos Vectores/microbiología , Insectos Vectores/parasitología , Insectos Vectores/virología , Mycobacterium leprae , Serratia marcescens , Triatoma , Triatominae/microbiología , Triatominae/parasitología , Triatominae/virología , Trypanosoma/patogenicidad , Trypanosoma cruzi , Virus/patogenicidad
14.
J Proteomics ; 174: 47-60, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29288089

RESUMEN

Triatoma dimidiata, a Chagas disease vector widely distributed along Central America, has great capability for domestic adaptation as the majority of specimens caught inside human dwellings or in peridomestic areas fed human blood. Exploring the salivary compounds that overcome host haemostatic and immune responses is of great scientific interest. Here, we provide a deeper insight into its salivary gland molecules. We used high-throughput RNA sequencing to examine in depth the T. dimidiata salivary gland transcriptome. From >51 million reads assembled, 92.21% are related to putative secreted proteins. Lipocalin is the most abundant gene family, confirming it is an expanded family in Triatoma genus salivary repertoire. Other putatively secreted members include phosphatases, odorant binding protein, hemolysin, proteases, protease inhibitors, antigen-5 and antimicrobial peptides. This work expands the previous set of functionally annotated sequences from T. dimidiata salivary glands available in NCBI from 388 to 3815. Additionally, we complemented the salivary analysis through proteomics (available data via ProteomeXchange with identifier PXD008510), disclosing the set complexity of 119 secreted proteins and validating the transcriptomic results. Our large-scale approach enriches the pharmacologically active molecules database and improves our knowledge about the complexity of salivary compounds from haematophagous vectors and their biological interactions. SIGNIFICANCE: Several haematophagous triatomine species can transmit Trypanosoma cruzi, the etiological agent of Chagas disease. Due to the reemergence of this disease, new drugs for its prevention and treatment are considered priorities. For this reason, the knowledge of vector saliva emerges as relevant biological finding, contributing to the design of different strategies for vector control and disease transmission. Here we report the transcriptomic and proteomic compositions of the salivary glands (sialome) of the reduviid bug Triatoma dimidiata, a relevant Chagas disease vector in Central America. Our results are robust and disclosed unprecedented insights into the notable diversity of its salivary glands content, revealing relevant anti-haemostatic salivary gene families. Our work expands almost ten times the previous set of functionally annotated sequences from T. dimidiata salivary glands available in NCBI. Moreover, using an integrated transcriptomic and proteomic approach, we showed a correlation pattern of transcription and translation processes for the main gene families found, an important contribution to the research of triatomine sialomes. Furthermore, data generated here reinforces the secreted proteins encountered can greatly contribute for haematophagic habit, Trypanosoma cruzi transmission and development of therapeutic agent studies.


Asunto(s)
Glándulas Salivales/química , Triatoma/química , Animales , Enfermedad de Chagas/transmisión , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Insectos Vectores/genética , Transcriptoma/genética , Triatoma/genética
15.
Pharmacogn Mag ; 13(52): 668-672, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29200731

RESUMEN

BACKGROUND: The rapid spread of drug-resistant strains of protozoan parasites required the urgent need for new effective drugs. Natural products offer a variety of chemical structures, which make them a valuable source of lead compounds for the development of such new drugs. Cerrado is the second largest biome in Brazil and has the richest flora of all the world savannahs. We selected Qualea grandiflora, a plant species known for its proprieties in folk medicine and its antibacterial activity. OBJECTIVE: However, its antiprotozoal activity was not yet explored. MATERIALS AND METHODS: We investigated the activities of fractions from the ethyl acetate extract of Q. grandiflora leaves against human life forms of Plasmodium falciparum, Trypanosoma cruzi, and Trypanosoma brucei gambiense, and for its cytotoxicity upon the rat L6-myoblast cell line. Ten fractions were produced by ethyl acetate:hexane chromatography. RESULTS AND CONCLUSION: The fractions showed no cytotoxicity against L-6 cells (IC50 > 100 µg/mL) and no hemolysis propriety. Three fractions had a moderate activity against P. falciparum, anyone was active against T. cruzi but four fractions demonstrated a high activity against bloodstream forms of T. brucei gambiense (8.0< IC50 <15 µg/mL). Identification and characterization of the active compounds are currently under investigation. SUMMARY: Qualea grandiflora is an endemic tree of the Brazilian Cerrado, which presents medicinal propertiesTen fractions of the ethyl acetate extract of Q. grandiflora leaves were assessed against Plasmodium falciparum, Trypanosoma Cruzi, and Trypanosoma brucei gambienseNo fraction showed relevant cytotoxicity and hemolysis activityAll the fractions presented antiplasmodial and trypanocidal activitiesThree fractions with moderate antiplasmodial activity (49< IC50 <56 µg/mL)Four fractions with high activity against bloodstream forms of T. brucei gambiense (8.0< IC50 <15 µg/mL). Abbreviations used: CQ: Chloroquine, DMSO: Dimethyl sulfoxide, HEPES: 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid, HMI: Modified Iscove's medium, IC50: Concentration inhibiting 50% of parasite growth, IC90: Concentration inhibiting 90% of parasite growth, MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, RPMI: Roswell Park Memorial Institute, SD: Standard deviation, SI: Ratio of cytotoxicity to biological activity - TC50/IC50, TC50: Concentration causing 50% of cell growth inhibition, TC90: Concentration causing 90% of cell growth inhibition, TLC: Thin-layer chromatography.

16.
BMC Complement Altern Med ; 16(1): 444, 2016 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-27825341

RESUMEN

BACKGROUND: The current chemotherapy for cutaneous leishmaniosis (CL) has a series of drug limitations such as toxic side effects, long duration, high costs and drug resistance, which requires the development of new drugs or effective alternatives to the CL treatment. Essential oils (EOs) are complex mixtures of secondary metabolites from various plants. It has been shown that several EOs, or their constituents, have inhibitory activity against protozoa. Thus, this study aims to evaluate the biological activity of different essential oils (EOs) on Leishmania (L.) amazonensis promastigotes forms, as well as their cytotoxicity on mammalian cells and chemical composition. METHODS: Sixteen EOs were evaluated by mean of IC50/24 h and cytotoxicity against L6 cells (CC50/24 h) using Resazurin assay. Only those EOs that presented better results for IC50/24 h were submitted to GC-MS analysis to determine their chemical constitution. RESULTS: The EO from Cinnamodendron dinisii, Matricaria chamomilla, Myroxylon peruiferum, Salvia sclarea, Bulnesia sarmientoi, Ferula galbaniflua, Siparuna guianensis and Melissa officinalis were the most active against L. amazonensis with IC50/24 h ranging from 54.05 to 162.25 µg/mL. Analysis of EOs by GC-MS showed mainly the presence of ß-farnesene (52.73 %) and bisabolol oxide (12.09 %) for M. chamomilla; α-copaene (13.41 %), safrole (8.35 %) and δ-cadinene (7.08 %) for M. peruiferum; linalool (28.80 %) and linalyl acetate (60.08 %) for S. sclarea; guaiol (48.29 %) and 2-undecanone (19.49 %) for B. sarmientoi; ethyl phthalate (13.09 %) and methyl-8-pimaren-18-oate (41.82 %) for F. galbaniflua; and neral (37.18 %) and citral (5.02 %) for M. officinalis. CONCLUSION: The EO from F. galbaniflua showed to be effective against L. amazonensis promastigotes forms and presented low cytotoxic activity against L6 cells. Thus, it represents a strong candidate for future studies aiming its molecular activity on these pathogenic parasites.


Asunto(s)
Antiprotozoarios/química , Antiprotozoarios/farmacología , Leishmania mexicana/efectos de los fármacos , Aceites Volátiles/química , Aceites Volátiles/farmacología , Extractos Vegetales/química , Extractos Vegetales/farmacología , Plantas Medicinales/química , Supervivencia Celular/efectos de los fármacos , Humanos , Leishmania mexicana/crecimiento & desarrollo , Leishmaniasis Cutánea/parasitología , Pruebas de Sensibilidad Parasitaria
17.
Nat Prod Res ; 30(11): 1320-6, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26222897

RESUMEN

The threatened Brazilian Cerrado biome is an important biodiversity hotspot but still few explored that constitutes a potential reservoir of molecules to treat infectious diseases. We selected eight Cerrado plant species for screening against the erythrocytic stages of Plasmodium falciparum, human intracellular stages of Trypanosoma cruzi and bloodstream forms of T. brucei gambiense, and for their cytotoxicity upon the rat L6-myoblast cell line. Bioassays were performed with 37 hexane, ethyl acetate and ethanol extracts prepared from different plant organs. Activities against parasites were observed for 24 extracts: 9 with anti-P. falciparum, 4 with anti-T. cruzi and 11 with anti-T. brucei gambiense activities. High anti-protozoal activity (IC50 values < 10 µg/mL) without obvious cytotoxicity to L6 cells was observed for eight extracts from plants: Connarus suberosus, Blepharocalyx salicifolius, Psidium laruotteanum and Myrsine guianensis. Overall, studies of plant extracts will contribute to increase the biodiversity knowledge essential for Cerrado conservation and sustainable development.


Asunto(s)
Antiprotozoarios/aislamiento & purificación , Ecosistema , Extractos Vegetales/farmacología , Animales , Antiprotozoarios/farmacología , Biodiversidad , Brasil , Línea Celular , Pradera , Humanos , Plasmodium falciparum/efectos de los fármacos , Ratas , Trypanosoma brucei gambiense/efectos de los fármacos , Trypanosoma cruzi/efectos de los fármacos
18.
PLoS One ; 9(1): e86600, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24475156

RESUMEN

Proteasome inhibitors have been described as an important target for cancer therapy due to their potential to regulate the ubiquitin-proteasome system in the degradation pathway of cellular proteins. Here, we reported the effects of a Bowman-Birk-type protease inhibitor, the Black-eyed pea Trypsin/Chymotrypsin Inhibitor (BTCI), on proteasome 20S in MCF-7 breast cancer cells and on catalytic activity of the purified 20S proteasome from horse erythrocytes, as well as the structural analysis of the BTCI-20S proteasome complex. In vitro experiments and confocal microscopy showed that BTCI readily crosses the membrane of the breast cancer cells and co-localizes with the proteasome in cytoplasm and mainly in nucleus. Indeed, as indicated by dynamic light scattering, BTCI and 20S proteasome form a stable complex at temperatures up to 55°C and at neutral and alkaline pHs. In complexed form, BTCI strongly inhibits the proteolytic chymotrypsin-, trypsin- and caspase-like activities of 20S proteasome, indicated by inhibition constants of 10(-7) M magnitude order. Besides other mechanisms, this feature can be associated with previously reported cytostatic and cytotoxic effects of BTCI in MCF-7 breast cancer cells by means of apoptosis.


Asunto(s)
Quimotripsina/antagonistas & inhibidores , Eritrocitos/metabolismo , Fabaceae/química , Complejos Multiproteicos/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Inhibidores de Tripsina/metabolismo , Animales , Femenino , Técnica del Anticuerpo Fluorescente , Caballos , Humanos , Células MCF-7 , Inhibidores de Tripsina/análisis
19.
PLoS One ; 7(1): e30431, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22276197

RESUMEN

Oligopeptidase B, a processing enzyme of the prolyl oligopeptidase family, is considered as an important virulence factor in trypanosomiasis. Trypanosoma cruzi oligopeptidase B (OPBTc) is involved in host cell invasion by generating a Ca(2+)-agonist necessary for recruitment and fusion of host lysosomes at the site of parasite attachment. The underlying mechanism remains unknown and further structural and functional characterization of OPBTc may help clarify its physiological function and lead to the development of new therapeutic molecules to treat Chagas disease. In the present work, size exclusion chromatography and analytical ultracentrifugation experiments demonstrate that OPBTc is a dimer in solution, an association salt and pH-resistant and independent of intermolecular disulfide bonds. The enzyme retains its dimeric structure and is fully active up to 42°C. OPBTc is inactivated and its tertiary, but not secondary, structure is disrupted at higher temperatures, as monitored by circular dichroism and fluorescence spectroscopy. It has a highly stable secondary structure over a broad range of pH, undergoes subtle tertiary structure changes at low pH and is less stable under moderate ionic strength conditions. These results bring new insights into the structural properties of OPBTc, contributing to future studies on the rational design of OPBTc inhibitors as a promising strategy for Chagas disease chemotherapy.


Asunto(s)
Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo , Serina Endopeptidasas/química , Serina Endopeptidasas/metabolismo , Trypanosoma cruzi/metabolismo , Factores de Virulencia/química , Factores de Virulencia/metabolismo , Cromatografía en Gel , Dicroismo Circular , Multimerización de Proteína , Espectrometría de Fluorescencia , Temperatura
20.
Yeast ; 25(2): 141-54, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18098122

RESUMEN

The dimorphic fungus Paracoccidioides brasiliensis is the causative agent of the most frequent systemic mycosis in Latin America. In humans, infection starts by inhalation of fungal propagules, which reach the pulmonary epithelium and differentiate into the yeast parasitic phase. Here we describe the characterization of a Dfg5p (defective for filamentous growth) homologue of P. brasiliensis, a predictable cell wall protein, first identified in Saccharomyces cerevisiae. The protein, the cDNA and genomic sequences were analysed. The cloned cDNA was expressed in Escherichia coli and the purified rPbDfg5p was used to obtain polyclonal antibodies. Immunoelectron microscopy and biochemical studies demonstrated the presence of PbDfg5p in the fungal cell wall. Enzymatic treatments identified PbDfg5p as a beta-glucan linked protein that undergoes N-glycosylation. The rPbDfg5p bound to extracellular matrix components, indicating that those interactions could be important for initial steps leading to P. brasiliensis attachment and colonization of host tissues.


Asunto(s)
Pared Celular/metabolismo , Proteínas Fúngicas/metabolismo , Paracoccidioides/crecimiento & desarrollo , Paracoccidioides/metabolismo , Ácido 2-Metil-4-clorofenoxiacético , Secuencia de Aminoácidos , Secuencia de Bases , ADN Complementario/genética , ADN de Hongos/genética , Dicamba , Combinación de Medicamentos , Fluorenos , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Genes Fúngicos , Genoma Fúngico , Humanos , Datos de Secuencia Molecular , Paracoccidioides/genética , Paracoccidioides/ultraestructura , Paracoccidioidomicosis/sangre , Paracoccidioidomicosis/inmunología , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...