Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 10146, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37537170

RESUMEN

Seafood mislabelling and species substitution, compounded by a convoluted seafood supply chain with significant traceability challenges, hinder efforts towards more sustainable, responsible, and ethical fishing and business practices. We conducted the largest evaluation of the quality and accuracy of labels for 672 seafood products sold in Australia, assessing six seafood groups (i.e., hoki, prawns, sharks and rays, snapper, squid and cuttlefish, and tuna) from fishmongers, restaurants, and supermarkets, including domestically caught and imported products. DNA barcoding revealed 11.8% of seafood tested did not match their label with sharks and rays, and snappers, having the highest mislabelling rate. Moreover, only 25.5% of products were labelled at a species-level, while most labels used vague common names or umbrella terms such as 'flake' and 'snapper'. These poor-quality labels had higher rates of mislabelling than species-specific labels and concealed the sale of threatened or overfished taxa, as well as products with lower nutritional quality, reduced economic value, or potential health risks. Our results highlight Australia's weak seafood labelling regulations and ambiguous non-mandatory naming conventions, which impede consumer choice for accurately represented, sustainable, and responsibly sourced seafood. We recommend strengthening labelling regulations to mitigate seafood mislabelling and substitution, ultimately improving consumer confidence when purchasing seafood.


Asunto(s)
Etiquetado de Alimentos , Alimentos Marinos , Comercio , Comportamiento del Consumidor , Australia
2.
Proc Biol Sci ; 290(1990): 20221744, 2023 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-36629100

RESUMEN

Climate-driven species redistributions are reshuffling the composition of marine ecosystems. How these changes alter ecosystem functions, however, remains poorly understood. Here we examine how impacts of herbivory change across a gradient of tropicalization in the Mediterranean Sea, which includes a steep climatic gradient and marked changes in plant nutritional quality and fish herbivore composition. We quantified individual feeding rates and behaviour of 755 fishes of the native Sarpa salpa, and non-native Siganus rivulatus and Siganus luridus. We measured herbivore and benthic assemblage composition across 20 sites along the gradient, spanning 30° of longitude and 8° of latitude. We coupled patterns in behaviour and composition with temperature measurements and nutrient concentrations to assess changes in herbivory under tropicalization. We found a transition in ecological impacts by fish herbivory across the Mediterranean from a predominance of seagrass herbivory in the west to a dominance of macroalgal herbivory in the east. Underlying this shift were changes in both individual feeding behaviour (i.e. food choice) and fish assemblage composition. The shift in feeding selectivity was consistent among temperate and warm-affiliated herbivores. Our findings suggest herbivory can contribute to the increased vulnerability of seaweed communities and reduced vulnerability of seagrass meadows in tropicalized ecosystems.


Asunto(s)
Herbivoria , Perciformes , Animales , Ecosistema , Peces , Conducta Alimentaria
3.
New Phytol ; 233(4): 1657-1666, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34843111

RESUMEN

The prevalence of local adaptation and phenotypic plasticity among populations is critical to accurately predicting when and where climate change impacts will occur. Currently, comparisons of thermal performance between populations are untested for most marine species or overlooked by models predicting the thermal sensitivity of species to extirpation. Here we compared the ecological response and recovery of seagrass populations (Posidonia oceanica) to thermal stress throughout a year-long translocation experiment across a 2800-km gradient in ocean climate. Transplants in central and warm-edge locations experienced temperatures > 29°C, representing thermal anomalies > 5°C above long-term maxima for cool-edge populations, 1.5°C for central and < 1°C for warm-edge populations. Cool-edge, central and warm-edge populations differed in thermal performance when grown under common conditions, but patterns contrasted with expectations based on thermal geography. Cool-edge populations did not differ from warm-edge populations under common conditions and performed significantly better than central populations in growth and survival. Our findings reveal that thermal performance does not necessarily reflect the thermal geography of a species. We demonstrate that warm-edge populations can be less sensitive to thermal stress than cooler, central populations suggesting that Mediterranean seagrasses have greater resilience to warming than current paradigms suggest.


Asunto(s)
Alismatales , Ecosistema , Aclimatación , Cambio Climático , Océanos y Mares , Temperatura
5.
Nat Ecol Evol ; 4(1): 109-114, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31900450

RESUMEN

Vertical migration to reach cooler waters is a suitable strategy for some marine organisms to adapt to ocean warming. Here, we calculate that realized vertical isotherm migration rates averaged -6.6 + 18.8 m dec-1 across the global ocean between 1980 and 2015. Throughout this century (2006-2100), surface isotherms are projected to deepen at an increasing rate across the globe, averaging -32.3 m dec-1 under the representative concentration pathway (RCP)8.5 'business as usual' emissions scenario, and -18.7 m dec-1 under the more moderate RCP4.5 scenario. The vertical redistribution required by organisms to follow surface isotherms over this century is three to four orders of magnitude less than the equivalent horizontal redistribution distance. However, the seafloor depth and the depth of the photic layer pose ultimate limits to the vertical migration possible by species. Both limits will be reached by the end of this century across much of the ocean, leading to a rapid global compression of the three-dimensional (3D) habitat of many marine organisms. Phytoplankton diversity may be maintained but displaced toward the base of the photic layer, whereas highly productive benthic habitats, especially corals, will have their suitable 3D habitat rapidly reduced.


Asunto(s)
Antozoos , Cambio Climático , Animales , Organismos Acuáticos , Ecosistema , Fitoplancton
6.
Glob Chang Biol ; 26(3): 1248-1258, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31758645

RESUMEN

Predictors for the ecological effects of non-native species are lacking, even though such knowledge is fundamental to manage non-native species and mitigate their impacts. Current theories suggest that the ecological effects of non-native species may be related to other concomitant anthropogenic stressors, but this has not been tested at a global scale. We combine an exhaustive meta-analysis of the ecological effects of marine non-native species with human footprint proxies to determine whether the ecological changes due to non-native species are modulated by co-occurring anthropogenic impacts. We found that non-native species had greater negative effects on native biodiversity where human population was high and caused reductions in individual performance where cumulative human impacts were large. On this basis we identified several marine ecoregions where non-native species may have the greatest ecological effects, including areas in the Mediterranean Sea and along the northwest coast of the United States. In conclusion, our global assessment suggests coexisting anthropogenic impacts can intensify the ecological effects of non-native species.


Asunto(s)
Ecosistema , Especies Introducidas , Biodiversidad , Ecología , Humanos , Mar Mediterráneo
7.
Nat Ecol Evol ; 3(9): 1367, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31375777

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

8.
Nat Ecol Evol ; 3(5): 787-800, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30962561

RESUMEN

Exotic species are a growing global ecological threat; however, their overall effects are insufficiently understood. While some exotic species are implicated in many species extinctions, others can provide benefits to the recipient communities. Here, we performed a meta-analysis to quantify and synthesize the ecological effects of 76 exotic marine species (about 6% of the listed exotics) on ten variables in marine communities. These species caused an overall significant, but modest in magnitude (as indicated by a mean effect size of g < 0.2), decrease in ecological variables. Marine primary producers and predators were the most disruptive trophic groups of the exotic species. Approximately 10% (that is, 2 out of 19) of the exotic species assessed in at least three independent studies had significant impacts on native species. Separating the innocuous from the disruptive exotic species provides a basis for triage efforts to control the marine exotic species that have the most impact, thereby helping to meet Aichi Biodiversity Target 9 of the Convention on Biological Diversity.


Asunto(s)
Biodiversidad , Especies Introducidas , Ecología , Extinción Biológica
9.
Ecol Evol ; 8(12): 6242-6252, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29988434

RESUMEN

We quantify the relative importance of multi-scale drivers of reef fish assemblage structure on isolated coral reefs at the intersection of the Indian and Indo-Pacific biogeographical provinces. Large (>30 cm), functionally-important and commonly targeted species of fish, were surveyed on the outer reef crest/front at 38 coral reef sites spread across three oceanic coral reef systems (i.e. Christmas Island, Cocos (Keeling) Islands and the Rowley Shoals), in the tropical Indian Ocean (c. 1.126 x 106 km2). The effects of coral cover, exposure, fishing pressure, lagoon size and geographical context, on observed patterns of fish assemblage structure were modelled using Multivariate Regression Trees. Reef fish assemblages were clearly separated in space with geographical location explaining ~53 % of the observed variation. Lagoon size, within each isolated reef system was an equally effective proxy for explaining fish assemblage structure. Among local-scale variables, 'distance from port', a proxy for the influence of fishing, explained 5.2% of total variation and separated the four most isolated reefs from Cocos (Keeling) Island, from reefs with closer boating access. Other factors were not significant. Major divisions in assemblage structure were driven by sister taxa that displayed little geographical overlap between reef systems and low abundances of several species on Christmas Island corresponding to small lagoon habitats. Exclusion of geographical context from the analysis resulted in local processes explaining 47.3% of the variation, highlighting the importance of controlling for spatial correlation to understand the drivers of fish assemblage structure. Our results suggest reef fish assemblage structure on remote coral reef systems in the tropical eastern Indian Ocean reflects a biogeographical legacy of isolation between Indian and Pacific fish faunas and geomorphological variation within the region, more than local fishing pressure or reef condition. Our findings re-emphasise the importance that historical processes play in structuring contemporary biotic communities.

10.
Science ; 353(6295): 169-72, 2016 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-27387951

RESUMEN

Ecosystem reconfigurations arising from climate-driven changes in species distributions are expected to have profound ecological, social, and economic implications. Here we reveal a rapid climate-driven regime shift of Australian temperate reef communities, which lost their defining kelp forests and became dominated by persistent seaweed turfs. After decades of ocean warming, extreme marine heat waves forced a 100-kilometer range contraction of extensive kelp forests and saw temperate species replaced by seaweeds, invertebrates, corals, and fishes characteristic of subtropical and tropical waters. This community-wide tropicalization fundamentally altered key ecological processes, suppressing the recovery of kelp forests.


Asunto(s)
Antozoos/fisiología , Cambio Climático , Arrecifes de Coral , Extinción Biológica , Kelp/fisiología , Clima Tropical , Animales , Australia , Peces , Agua de Mar , Temperatura
11.
Ecol Lett ; 18(7): 714-23, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25994785

RESUMEN

Climate-mediated changes to biotic interactions have the potential to fundamentally alter global ecosystems. However, the capacity for novel interactions to drive or maintain transitions in ecosystem states remains unresolved. We examined temperate reefs that recently underwent complete seaweed canopy loss and tested whether a concurrent increase in tropical herbivores could be maintaining the current canopy-free state. Turf-grazing herbivorous fishes increased in biomass and diversity, and displayed feeding rates comparable to global coral reefs. Canopy-browsing herbivores displayed high (~ 10,000 g 100 m(-2) ) and stable biomass between 2006 and 2013. Tropical browsers had the highest abundance in 2013 and displayed feeding rates approximately three times higher than previously observed on coral reefs. These observations suggest that tropical herbivores are maintaining previously kelp-dominated temperate reefs in an alternate canopy-free state by grazing turfs and preventing kelp reestablishment. This remarkable ecosystem highlights the sensitivity of biotic interactions and ecosystem stability to warming and extreme disturbance events.


Asunto(s)
Cambio Climático , Arrecifes de Coral , Peces , Herbivoria , Kelp , Animales , Australia , Clima Tropical
12.
Ecol Lett ; 18(1): 66-73, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25438826

RESUMEN

Ecological studies require key decisions regarding the appropriate size and number of sampling units. No methods currently exist to measure precision for multivariate assemblage data when dissimilarity-based analyses are intended to follow. Here, we propose a pseudo multivariate dissimilarity-based standard error (MultSE) as a useful quantity for assessing sample-size adequacy in studies of ecological communities. Based on sums of squared dissimilarities, MultSE measures variability in the position of the centroid in the space of a chosen dissimilarity measure under repeated sampling for a given sample size. We describe a novel double resampling method to quantify uncertainty in MultSE values with increasing sample size. For more complex designs, values of MultSE can be calculated from the pseudo residual mean square of a permanova model, with the double resampling done within appropriate cells in the design. R code functions for implementing these techniques, along with ecological examples, are provided.


Asunto(s)
Biota , Ecología/métodos , Modelos Teóricos , Análisis Multivariante , Proyectos de Investigación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...