Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Am J Respir Crit Care Med ; 199(1): 71-82, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30079758

RESUMEN

RATIONALE: Characterization of patterns of wheezing and allergic sensitization in early life may allow for identification of specific environmental exposures impacting asthma development. OBJECTIVES: To define respiratory phenotypes in inner-city children and their associations with early-life environmental exposures. METHODS: Data were collected prospectively from 442 children in the URECA (Urban Environment and Childhood Asthma) birth cohort through age 7 years, reflecting symptoms (wheezing), aeroallergen sensitization, pulmonary function, and body mass index. Latent class mixed models identified trajectories of wheezing, allergic sensitization, and pulmonary function. Cluster analysis defined nonoverlapping groups (termed phenotypes). Potential associations between phenotypes and early-life environmental exposures were examined. MEASUREMENTS AND MAIN RESULTS: Five phenotypes were identified and mainly differentiated by patterns of wheezing and allergic sensitization (low wheeze/low atopy; low wheeze/high atopy; transient wheeze/low atopy; high wheeze/low atopy; high wheeze/high atopy). Asthma was most often present in the high-wheeze phenotypes, with greatest respiratory morbidity among children with frequent wheezing and allergic sensitization. These phenotypes differentially related to early-life exposures, including maternal stress and depression, antenatal environmental tobacco smoke, house dust microbiome, and allergen content (all P < 0.05). Prenatal smoke exposure, maternal stress, and depression were highest in the high-wheeze/low-atopy phenotype. The high-wheeze/high-atopy phenotype was associated with low household microbial richness and diversity. Early-life aeroallergen exposure was low in high-wheeze phenotypes. CONCLUSIONS: Patterns of wheezing, allergic sensitization, and lung function identified five respiratory phenotypes among inner-city children. Early-life environmental exposure to stress, depression, tobacco smoke, and indoor allergens and microbes differentially associate with specific phenotypes.


Asunto(s)
Enfermedades Respiratorias/epidemiología , Población Urbana/estadística & datos numéricos , Asma/epidemiología , Asma/etiología , Niño , Preescolar , Análisis por Conglomerados , Exposición a Riesgos Ambientales/efectos adversos , Femenino , Humanos , Hipersensibilidad Inmediata/epidemiología , Hipersensibilidad Inmediata/etiología , Lactante , Recién Nacido , Estudios Longitudinales , Masculino , Fenotipo , Estudios Prospectivos , Pruebas de Función Respiratoria , Ruidos Respiratorios/etiología , Enfermedades Respiratorias/etiología , Factores de Riesgo , Pruebas Cutáneas , Encuestas y Cuestionarios
2.
PLoS One ; 13(5): e0196551, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29734356

RESUMEN

The microbiome influences adaptive immunity and molecular mimicry influences T cell reactivity. Here, we evaluated whether the sequence similarity of various antigens to the microbiota dampens or increases immunogenicity of T cell epitopes. Sets of epitopes and control sequences derived from 38 antigenic categories (infectious pathogens, allergens, autoantigens) were retrieved from the Immune Epitope Database (IEDB). Their similarity to microbiome sequences was calculated using the BLOSUM62 matrix. We found that sequence similarity was associated with either dampened (tolerogenic; e.g. most allergens) or increased (inflammatory; e.g. Dengue and West Nile viruses) likelihood of a peptide being immunogenic as a function of epitope source category. Ten-fold cross-validation and validation using sets of manually curated epitopes and non-epitopes derived from allergens were used to confirm these initial observations. Furthermore, the genus from which the microbiome homologous sequences were derived influenced whether a tolerogenic versus inflammatory modulatory effect was observed, with Fusobacterium most associated with inflammatory influences and Bacteroides most associated with tolerogenic influences. We validated these effects using PBMCs stimulated with various sets of microbiome peptides. "Tolerogenic" microbiome peptides elicited IL-10 production, "inflammatory" peptides elicited mixed IL-10/IFNγ production, while microbiome epitopes homologous to self were completely unreactive for both cytokines. We also tested the sequence similarity of cockroach epitopes to specific microbiome sequences derived from households of cockroach allergic individuals and non-allergic controls. Microbiomes from cockroach allergic households were less likely to contain sequences homologous to previously defined cockroach allergens. These results are compatible with the hypothesis that microbiome sequences may contribute to the tolerization of T cells for allergen epitopes, and lack of these sequences might conversely be associated with increased likelihood of T cell reactivity against the cockroach epitopes. Taken together this study suggests that microbiome sequence similarity influences immune reactivity to homologous epitopes encoded by pathogens, allergens and auto-antigens.


Asunto(s)
Epítopos de Linfocito T/genética , Epítopos de Linfocito T/inmunología , Microbiota/inmunología , Inmunidad Adaptativa/inmunología , Adulto , Alérgenos/inmunología , Secuencia de Aminoácidos , Reacciones Cruzadas/inmunología , Bases de Datos de Proteínas , Epítopos/inmunología , Femenino , Humanos , Masculino , Péptidos/química , Linfocitos T/inmunología
3.
Microbiome ; 4(1): 34, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27364497

RESUMEN

BACKGROUND: Upper respiratory infections (URI) and their complications are a major healthcare burden for pediatric populations. Although the microbiology of the nasopharynx is an important determinant of the complications of URI, little is known of the nasopharyngeal (NP) microbiota of children, the factors that affect its composition, and its precise relationship with URI. RESULTS: Healthy children (n = 47) aged 49-84 months from a prospective cohort study based in Wisconsin, USA, were examined. Demographic and clinical data and NP swab samples were obtained from participants upon entry to the study. All NP samples were profiled for bacterial microbiota using a phylogenetic microarray, and these data were related to demographic characteristics and upper respiratory health outcomes. The composition of the NP bacterial community of children was significantly related prior to the history of acute sinusitis (R (2) = 0.070, P < 0.009). History of acute sinusitis was associated with significant depletion in relative abundance of taxa including Faecalibacterium prausnitzii and Akkermansia spp. and enrichment of Moraxella nonliquefaciens. Enrichment of M. nonliquefaciens was also a characteristic of baseline NP samples of children who subsequently developed acute sinusitis over the 1-year study period. Time to develop URI was significantly positively correlated with NP diversity, and children who experienced more frequent URIs exhibited significantly diminished NP microbiota diversity (P ≤ 0.05). CONCLUSIONS: These preliminary data suggest that previous history of acute sinusitis influences the composition of the NP microbiota, characterized by a depletion in relative abundance of specific taxa. Diminished diversity was associated with more frequent URIs.


Asunto(s)
Bacterias/clasificación , Bacterias/aislamiento & purificación , Microbiota/genética , Nasofaringe/microbiología , Sinusitis/microbiología , Bacterias/genética , Niño , Preescolar , Estudios de Cohortes , Humanos , Estudios Longitudinales , Análisis de Secuencia por Matrices de Oligonucleótidos , Filogenia , Estudios Prospectivos , Virus/aislamiento & purificación , Wisconsin
4.
Cell Rep ; 13(8): 1589-97, 2015 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-26586432

RESUMEN

Gut microbes can profoundly modulate mucosal barrier-promoting Th17 cells in mammals. A salient feature of HIV/simian immunodeficiency virus (SIV) immunopathogenesis is the loss of Th17 cells, which has been linked to increased activity of the immunomodulatory enzyme, indoleamine 2,3-dioxygenase 1 (IDO 1). The role of gut microbes in this system remains unknown, and the SIV-infected rhesus macaque provides a well-described model for HIV-associated Th17 loss and mucosal immune disruption. We observed a specific depletion of gut-resident Lactobacillus during acute and chronic SIV infection of rhesus macaques, which was also seen in early HIV-infected humans. This depletion in rhesus macaques correlated with increased IDO1 activity and Th17 loss. Macaques supplemented with a Lactobacillus-containing probiotic exhibited decreased IDO1 activity during chronic SIV infection. We propose that Lactobacillus species inhibit mammalian IDO1 and thus may help to preserve Th17 cells during pathogenic SIV infection, providing support for Lactobacillus species as modulators of mucosal immune homeostasis.


Asunto(s)
Indolamina-Pirrol 2,3,-Dioxigenasa/inmunología , Mucosa Intestinal/inmunología , Mucosa Intestinal/microbiología , Lactobacillus/inmunología , Macaca mulatta/inmunología , Virus de la Inmunodeficiencia de los Simios/inmunología , Células Th17/inmunología , Animales , Femenino , Infecciones por VIH/inmunología , Infecciones por VIH/microbiología , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/microbiología , Células Th17/microbiología
5.
Front Microbiol ; 2: 94, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21833332

RESUMEN

Soils are immensely diverse microbial habitats with thousands of co-existing bacterial, archaeal, and fungal species. Across broad spatial scales, factors such as pH and soil moisture appear to determine the diversity and structure of soil bacterial communities. Within any one site however, bacterial taxon diversity is high and factors maintaining this diversity are poorly resolved. Candidate factors include organic substrate availability and chemical recalcitrance, and given that they appear to structure bacterial communities at the phylum level, we examine whether these factors might structure bacterial communities at finer levels of taxonomic resolution. Analyzing 16S rRNA gene composition of nucleotide analog-labeled DNA by PhyloChip microarrays, we compare relative growth rates on organic substrates of increasing chemical recalcitrance of >2,200 bacterial taxa across 43 divisions/phyla. Taxa that increase in relative abundance with labile organic substrates (i.e., glycine, sucrose) are numerous (>500), phylogenetically clustered, and occur predominantly in two phyla (Proteobacteria and Actinobacteria) including orders Actinomycetales, Enterobacteriales, Burkholderiales, Rhodocyclales, Alteromonadales, and Pseudomonadales. Taxa increasing in relative abundance with more chemically recalcitrant substrates (i.e., cellulose, lignin, or tannin-protein) are fewer (168) but more phylogenetically dispersed, occurring across eight phyla and including Clostridiales, Sphingomonadalaes, Desulfovibrionales. Just over 6% of detected taxa, including many Burkholderiales increase in relative abundance with both labile and chemically recalcitrant substrates. Estimates of median rRNA copy number per genome of responding taxa demonstrate that these patterns are broadly consistent with bacterial growth strategies. Taken together, these data suggest that changes in availability of intrinsically labile substrates may result in predictable shifts in soil bacterial composition.

6.
Cell ; 139(3): 485-98, 2009 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-19836068

RESUMEN

The gastrointestinal tract of mammals is inhabited by hundreds of distinct species of commensal microorganisms that exist in a mutualistic relationship with the host. How commensal microbiota influence the host immune system is poorly understood. We show here that colonization of the small intestine of mice with a single commensal microbe, segmented filamentous bacterium (SFB), is sufficient to induce the appearance of CD4(+) T helper cells that produce IL-17 and IL-22 (Th17 cells) in the lamina propria. SFB adhere tightly to the surface of epithelial cells in the terminal ileum of mice with Th17 cells but are absent from mice that have few Th17 cells. Colonization with SFB was correlated with increased expression of genes associated with inflammation and antimicrobial defenses and resulted in enhanced resistance to the intestinal pathogen Citrobacter rodentium. Thus, manipulation of this commensal-regulated pathway may provide new opportunities for enhancing mucosal immunity and treating autoimmune disease.


Asunto(s)
Bacterias Grampositivas/inmunología , Mucosa Intestinal/inmunología , Mucosa Intestinal/microbiología , Linfocitos T Colaboradores-Inductores/inmunología , Animales , Diferenciación Celular , Citrobacter rodentium/inmunología , Bacterias Grampositivas/fisiología , Inmunidad Mucosa/inmunología , Interleucina-17/inmunología , Interleucinas/inmunología , Mucosa Intestinal/fisiología , Ratones , Ratones Endogámicos C57BL , Membrana Mucosa/inmunología , Membrana Mucosa/microbiología , Proteína Amiloide A Sérica/metabolismo , Organismos Libres de Patógenos Específicos , Simbiosis , Interleucina-22
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...