Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Langmuir ; 36(46): 14009-14018, 2020 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-33182998

RESUMEN

We report on the adsorption kinetics of azobenzene-containing surfactants on solid surfaces of different hydrophobicity. The understanding of this processes is of great importance for many interfacial phenomena that can be actuated and triggered by light, since the surfactant molecules contain a photoresponsive azobenzene group in their hydrophobic tail. Three surfactant types are studied, differing in the spacer connecting the headgroup and the azobenzene unit by between 6 and 10 CH2 groups. Under irradiation with light of a suitable wavelength, the azobenzene undergoes reversible photoisomerization between two states, a nonpolar trans-state and a highly polar cis-state. Consequently, the surfactant molecule changes its hydrophobicity and thus affinity to a surface depending on the photoisomerization state of the azobenzene. The adsorption behavior on hydrophilic (glass) and hydrophobic (TeflonAF) surfaces is analyzed using quartz crystal microbalance with dissipation (QCM-D) and ζ-potential measurements. At equilibrium, the adsorbed surfactant amount is almost twice as large on glass compared to TeflonAF for both isomers. The adsorption rate for the trans-isomers on both surfaces is similar, but the desorption rate of the trans-isomers is faster at the glass-water interface than at the Teflon-water interface. This result demonstrates that the trans-isomers have higher affinity for the glass surface, so the trans-to-cis ratios on glass and TeflonAF are 80/1 and 2/1, respectively, with similar trends for all three surfactant types.

2.
Langmuir ; 36(25): 6994-7004, 2020 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-32073263

RESUMEN

The repulsive surface forces, such as electrostatic or steric, acting between particles explain why they remain well separated in aqueous electrolyte solutions and are responsible for the stability of colloidal dispersions. However, the effective range of these interactions is always well below hundreds of nanometers and typically can be controlled by advanced manipulations such as tuning the electrolyte concentration or modifying the particle surface or, in some more specific cases, via subjecting the suspension to an external electric or magnetic field. Here we employ solutions with small additives of a photosensitive ionic surfactant to investigate if a repulsive interaction of microsized particles sedimented at the solid surface can be remotely controlled simply by illuminating it with an appropriate wavelength. We show that interactions of conventional impermeable particles remain practically unaffected by light, but, in contrast, for porous particles, we observe a long-range repulsion, several orders of magnitude longer than any conceivable equilibrium surface force. This repulsion emerges due to the diffusio-osmotic flow generated near the porous particles that in this scenario are playing a role of micropumps. The diffusio-osmotic repulsion of porous particles can be used for a remote control of their two-dimensional assemblies at the solid wall, and in particular, we demonstrate that by simply using two different illumination wavelengths it is possible to reversibly switch the state of porous particle dispersion from densely packed surface aggregates to a periodic lattice of particles separated by distances on the order of tens of micrometers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...