Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Cardiovasc Dev Dis ; 10(10)2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37887855

RESUMEN

Dilated cardiomyopathy (DCM) is a common heart muscle disorder that frequently leads to heart failure, arrhythmias, and death. While DCM is often heritable, disease-causing mutations are identified in only ~30% of cases. In a forward genetic mutagenesis screen, we identified a novel zebrafish mutant, heart and head (hahvcc43), characterized by early-onset cardiomyopathy and craniofacial defects. Linkage analysis and next-generation sequencing identified a nonsense variant in the highly conserved scfd1 gene, also known as sly1, that encodes sec1 family domain-containing 1. Sec1/Munc18 proteins, such as Scfd1, are involved in membrane fusion regulating endoplasmic reticulum (ER)/Golgi transport. CRISPR/Cas9-engineered scfd1vcc44 null mutants showed severe cardiac and craniofacial defects and embryonic lethality that recapitulated the phenotype of hahvcc43 mutants. Electron micrographs of scfd1-depleted cardiomyocytes showed reduced myofibril width and sarcomere density, as well as reticular network disorganization and fragmentation of Golgi stacks. Furthermore, quantitative PCR analysis showed upregulation of ER stress response and apoptosis markers. Both heterozygous hahvcc43 mutants and scfd1vcc44 mutants survived to adulthood, showing chamber dilation and reduced ventricular contraction. Collectively, our data implicate scfd1 loss-of-function as the genetic defect at the hahvcc43 locus and provide new insights into the role of scfd1 in cardiac development and function.

2.
Curr Cardiol Rep ; 24(9): 1069-1075, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35759169

RESUMEN

PURPOSE OF REVIEW: Truncating TTN variants (TTNtv) are the most common genetic cause of dilated cardiomyopathy (DCM), but the underlying mechanisms are incompletely understood and effective therapeutic strategies are lacking. Here we review recent data that shed new light on the functional consequences of TTNtv and how these effects may vary with mutation location. RECENT FINDINGS: Whether TTNtv act by haploinsufficiency or dominant negative effects has been hotly debated. New evidence now implicates both mechanisms in TTNtv-related DCM, showing reduced titin content and persistent truncated titin that may be incorporated into protein aggregates. The extent to which aggregate formation and protein quality control defects differ with TTNtv location and contribute to contractile dysfunction is unresolved. TTNtv-associated DCM has a complex etiology that involves varying combinations of wild-type titin deficiency and dominant negative effects of truncated mutant titin. Therapeutic strategies to improve protein handling may be beneficial in some cases.


Asunto(s)
Cardiomiopatías , Cardiomiopatía Dilatada , Cardiomiopatías/genética , Cardiomiopatía Dilatada/genética , Conectina/genética , Conectina/metabolismo , Humanos , Mutación
3.
J Cardiovasc Dev Dis ; 8(2)2021 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-33504111

RESUMEN

Dilated cardiomyopathy (DCM) is a common heart muscle disorder characterized by ventricular dilation and contractile dysfunction that is associated with significant morbidity and mortality. New insights into disease mechanisms and strategies for treatment and prevention are urgently needed. Truncating variants in the TTN gene, which encodes the giant sarcomeric protein titin (TTNtv), are the most common genetic cause of DCM, but exactly how TTNtv promote cardiomyocyte dysfunction is not known. Although rodent models have been widely used to investigate titin biology, they have had limited utility for TTNtv-related DCM. In recent years, zebrafish (Danio rerio) have emerged as a powerful alternative model system for studying titin function in the healthy and diseased heart. Optically transparent embryonic zebrafish models have demonstrated key roles of titin in sarcomere assembly and cardiac development. The increasing availability of sophisticated imaging tools for assessment of heart function in adult zebrafish has revolutionized the field and opened new opportunities for modelling human genetic disorders. Genetically modified zebrafish that carry a human A-band TTNtv have now been generated and shown to spontaneously develop DCM with age. This zebrafish model will be a valuable resource for elucidating the phenotype modifying effects of genetic and environmental factors, and for exploring new drug therapies.

4.
Circ Genom Precis Med ; 11(8): e002135, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30354343

RESUMEN

Background Truncating variants in the TTN gene ( TTNtv) are common in patients with dilated cardiomyopathy (DCM) but also occur in the general population. Whether TTNtv are sufficient to cause DCM or require a second hit for DCM manifestation is an important clinical issue. Methods We generated a zebrafish model of an A-band TTNtv identified in 2 human DCM families in which early-onset disease appeared to be precipitated by ventricular volume overload. Cardiac phenotypes were serially assessed from 0 to 12 months using video microscopy, high-frequency echocardiography, and histopathologic analysis. The effects of sustained hemodynamic stress resulting from an anemia-induced hyperdynamic state were also evaluated. Results Homozygous ttna mutants had severe cardiac dysmorphogenesis and premature death, whereas heterozygous mutants ( ttnatv/+) survived into adulthood and spontaneously developed DCM. Six-month-old ttnatv/+ fish had reduced baseline ventricular systolic function and failed to mount a hypercontractile response when challenged by hemodynamic stress. Pulsed wave and tissue Doppler analysis also revealed unsuspected ventricular diastolic dysfunction in ttnatv/+ fish with prolonged isovolumic relaxation and increased diastolic passive stiffness in the absence of myocardial fibrosis. These defects reduced diastolic reserve under stress conditions and resulted in disproportionately greater atrial dilation than observed in wild-type fish. Conclusions Heterozygosity for A-band titin truncation is sufficient to cause DCM in adult zebrafish. Abnormalities of systolic and diastolic reserve in titin-truncated fish reduce stress tolerance and may contribute to a substrate for atrial arrhythmogenesis. These data suggest that hemodynamic stress may be an important modifiable risk factor in human TTNtv-related DCM.


Asunto(s)
Cardiomiopatía Dilatada/genética , Conectina/genética , Hemodinámica/genética , Estrés Fisiológico/genética , Adaptación Biológica/genética , Adolescente , Adulto , Anciano , Animales , Animales Modificados Genéticamente , Cardiomiopatía Dilatada/patología , Cardiomiopatía Dilatada/fisiopatología , Embrión no Mamífero , Femenino , Estudios de Asociación Genética , Corazón/embriología , Corazón/crecimiento & desarrollo , Cardiopatías Congénitas/genética , Cardiopatías Congénitas/patología , Humanos , Masculino , Persona de Mediana Edad , Linaje , Sarcómeros/patología , Eliminación de Secuencia , Volumen Sistólico/genética , Adulto Joven , Pez Cebra
5.
Dis Model Mech ; 11(9)2018 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-30012855

RESUMEN

Zebrafish are increasingly used as a vertebrate model to study human cardiovascular disorders. Although heart structure and function are readily visualized in zebrafish embryos because of their optical transparency, the lack of effective tools for evaluating the hearts of older, nontransparent fish has been a major limiting factor. The recent development of high-frequency echocardiography has been an important advance for in vivo cardiac assessment, but it necessitates anesthesia and has limited ability to study acute interventions. We report the development of an alternative experimental ex vivo technique for quantifying heart size and function that resembles the Langendorff heart preparations that have been widely used in mammalian models. Dissected adult zebrafish hearts were perfused with a calcium-containing buffer, and a beat frequency was maintained with electrical stimulation. The impact of pacing frequency, flow rate and perfusate calcium concentration on ventricular performance (including end-diastolic and end-systolic volumes, ejection fraction, radial strain, and maximal velocities of shortening and relaxation) were evaluated and optimal conditions defined. We determined the effects of age on heart function in wild-type male and female zebrafish, and successfully detected hypercontractile and hypocontractile responses after adrenergic stimulation or doxorubicin treatment, respectively. Good correlations were found between indices of cardiac contractility obtained with high-frequency echocardiography and with the ex vivo technique in a subset of fish studied with both methods. The ex vivo beating heart preparation is a valuable addition to the cardiac function tool kit that will expand the use of adult zebrafish for cardiovascular research.


Asunto(s)
Envejecimiento/fisiología , Corazón/fisiología , Perfusión/métodos , Pez Cebra/fisiología , Animales , Cardiomiopatías/inducido químicamente , Cardiomiopatías/fisiopatología , Doxorrubicina/efectos adversos , Electrocardiografía , Femenino , Ventrículos Cardíacos/anatomía & histología , Masculino , Contracción Miocárdica , Tamaño de los Órganos
6.
Heart Lung Circ ; 26(9): 894-901, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28601532

RESUMEN

Genetic variation is an important determinant of atrial fibrillation (AF) susceptibility. Numerous rare variants in protein-coding sequences of genes have been associated with AF in families and in early-onset cases, and chromosomal loci harbouring common risk variants have been mapped in AF cohorts. Many of these loci are in non-coding regions of the human genome and are thought to contain regulatory sequences that modulate gene expression. Disease genes implicated to date have predominantly encoded cardiac ion channels, with predicted mutation effects on the atrial action potential duration. More recent studies have expanded the spectrum of disease-associated genes to include myocardial structural components and have highlighted an unsuspected role for cardiac transcription factors. These paradigm-shifting discoveries suggest that abnormalities of atrial specification arising during cardiac development might provide a template for AF in later adult life. With the escalating pace of variant discovery, there is an increasing need for mechanistic studies not only to evaluate single variants, but also to determine the collective effects of each person's burden of rare and common genetic variants, co-morbidities and lifestyle factors on the atrial substrate for arrhythmogenesis. Elucidation of an individual's genetic predisposition and modifiable environmental risk factors will facilitate personalised approaches to AF treatment.


Asunto(s)
Fibrilación Atrial/genética , Predisposición Genética a la Enfermedad , Canales Iónicos/genética , Factores de Transcripción/genética , Fibrilación Atrial/metabolismo , Variación Genética , Humanos , Canales Iónicos/metabolismo
7.
Dis Model Mech ; 10(1): 63-76, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-28067629

RESUMEN

The zebrafish (Danio rerio) is an increasingly popular model organism in cardiovascular research. Major insights into cardiac developmental processes have been gained by studies of embryonic zebrafish. However, the utility of zebrafish for modeling adult-onset heart disease has been limited by a lack of robust methods for in vivo evaluation of cardiac function. We established a physiological protocol for underwater zebrafish echocardiography using high frequency ultrasound, and evaluated its reliability in detecting altered cardiac function in two disease models. Serial assessment of cardiac function was performed in wild-type zebrafish aged 3 to 12 months and the effects of anesthetic agents, age, sex and background strain were evaluated. There was a varying extent of bradycardia and ventricular contractile impairment with different anesthetic drugs and doses, with tricaine 0.75 mmol l-1 having a relatively more favorable profile. When compared with males, female fish were larger and had more measurement variability. Although age-related increments in ventricular chamber size were greater in females than males, there were no sex differences when data were normalized to body size. Systolic ventricular function was similar in both sexes at all time points, but differences in diastolic function were evident from 6 months onwards. Wild-type fish of both sexes showed a reliance on atrial contraction for ventricular diastolic filling. Echocardiographic evaluation of adult zebrafish with diphtheria toxin-induced myocarditis or anemia-induced volume overload accurately identified ventricular dilation and altered contraction, with suites of B-mode, ventricular strain, pulsed-wave Doppler and tissue Doppler indices showing concordant changes indicative of myocardial hypocontractility or hypercontractility, respectively. Repeatability, intra-observer and inter-observer correlations for echocardiographic measurements were high. We demonstrate that high frequency echocardiography allows reliable in vivo cardiac assessment in adult zebrafish and make recommendations for optimizing data acquisition and analysis. This enabling technology reveals new insights into zebrafish cardiac physiology and provides an imaging platform for zebrafish-based translational research.


Asunto(s)
Envejecimiento/fisiología , Ecocardiografía/normas , Cardiopatías/diagnóstico por imagen , Cardiopatías/fisiopatología , Pruebas de Función Cardíaca/normas , Pez Cebra/fisiología , Puntos Anatómicos de Referencia , Anemia/patología , Anestesia , Animales , Tamaño Corporal , Toxina Diftérica , Modelos Animales de Enfermedad , Estudios de Factibilidad , Femenino , Ventrículos Cardíacos/diagnóstico por imagen , Ventrículos Cardíacos/patología , Ventrículos Cardíacos/fisiopatología , Masculino , Contracción Miocárdica , Miocarditis/diagnóstico por imagen , Miocarditis/patología , Miocarditis/fisiopatología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Tamaño de los Órganos , Estándares de Referencia , Reproducibilidad de los Resultados , Función Ventricular Izquierda
9.
J Mol Cell Cardiol ; 97: 24-35, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27103460

RESUMEN

The two-pore domain potassium (K(+)) channel TWIK-1 (or K2P1.1) contributes to background K(+) conductance in diverse cell types. TWIK-1, encoded by the KCNK1 gene, is present in the human heart with robust expression in the atria, however its physiological significance is unknown. To evaluate the cardiac effects of TWIK-1 deficiency, we studied zebrafish embryos after knockdown of the two KCNK1 orthologues, kcnk1a and kcnk1b. Knockdown of kcnk1a or kcnk1b individually caused bradycardia and atrial dilation (p<0.001 vs. controls), while ventricular stroke volume was preserved. Combined knockdown of both kcnk1a and kcnk1b resulted in a more severe phenotype, which was partially reversed by co-injection of wild-type human KCNK1 mRNA, but not by a dominant negative variant of human KCNK1 mRNA. To determine whether genetic variants in KCNK1 might cause atrial fibrillation (AF), we sequenced protein-coding regions in two independent cohorts of patients (373 subjects) and identified three non-synonymous variants, p.R171H, p.I198M and p.G236S, that were all located in highly conserved amino acid residues. In transfected mammalian cells, zebrafish and wild-type human TWIK-1 channels had a similar cellular distribution with predominant localization in the endosomal compartment. Two-electrode voltage-clamp experiments using Xenopus oocytes showed that both zebrafish and wild-type human TWIK-1 channels produced K(+) currents that are sensitive to external K(+) concentration as well as acidic pH. There were no effects of the three KCNK1 variants on cellular localization, current amplitude or reversal potential at pH7.4 or pH6. Our data indicate that TWIK-1 has a highly conserved role in cardiac function and is required for normal heart rate and atrial morphology. Despite the functional importance of TWIK-1 in the atrium, genetic variation in KCNK1 is not a common primary cause of human AF.


Asunto(s)
Remodelación Atrial/genética , Estudios de Asociación Genética , Atrios Cardíacos/metabolismo , Frecuencia Cardíaca/genética , Canales de Potasio de Dominio Poro en Tándem/genética , Adulto , Anciano , Animales , Fibrilación Atrial/genética , Fibrilación Atrial/metabolismo , Fibrilación Atrial/patología , Fibrilación Atrial/fisiopatología , Femenino , Expresión Génica , Técnicas de Inactivación de Genes , Variación Genética , Atrios Cardíacos/anatomía & histología , Atrios Cardíacos/patología , Humanos , Masculino , Persona de Mediana Edad , Mutación , Linaje , Canales de Potasio de Dominio Poro en Tándem/deficiencia , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Transporte de Proteínas , Factores de Riesgo , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...