Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cancers (Basel) ; 15(23)2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38067333

RESUMEN

Interfraction anatomic deformations decrease the precision of radiotherapy, which can be improved by online adaptive radiation therapy (oART). However, oART takes time, allowing intrafractional deformations. In this study on focal radiotherapy for bladder cancer, we analyzed the time effect of oART on the equivalent uniform dose in the CTV (EUDCTV) per fraction and for the accumulated dose distribution over a treatment series as measure of effectiveness. A time-dependent digital CTV model was built from deformable image registration (DIR) between pre- and post-adaptation imaging. The model was highly dose fraction-specific. Planning target volume (PTV) margins were varied by shrinking the clinical PTV to obtain the margin-specific CTV. The EUDCTV per fraction decreased by-4.4 ± 0.9% of prescribed dose per min in treatment series with a steeper than average time dependency of EUDCTV. The EUDCTV for DIR-based accumulated dose distributions over a treatment series was significantly dependent on adaptation time and PTV margin (p < 0.0001, Chi2 test for each variable). Increasing adaptation times larger than 10 min by five minutes requires a 1.9 ± 0.24 mm additional margin to maintain EUDCTV for a treatment series. Adaptation time is an important determinant of the precision of oART for one half of the bladder cancer patients, and it should be aimed at to be minimized.

2.
Cancers (Basel) ; 15(20)2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37894299

RESUMEN

Online adaptive radiotherapy (ART) allows adaptation of the dose distribution to the anatomy captured by with pre-adaptation imaging. ART is time-consuming, and thus intra-fractional deformations can occur. This prospective registry study analyzed the effects of intra-fraction deformations of clinical target volume (CTV) on the equivalent uniform dose (EUDCTV) of focal bladder cancer radiotherapy. Using margins of 5-10 mm around CTV on pre-adaptation imaging, intra-fraction CTV-deformations found in a second imaging study reduced the 10th percentile of EUDCTV values per fraction from 101.1% to 63.2% of the prescribed dose. Dose accumulation across fractions of a series was determined with deformable-image registration and worst-case dose accumulation that maximizes the correlation of cold spots. A strong fractionation effect was demonstrated-the EUDCTV was above 95% and 92.5% as determined by the two abovementioned accumulation methods, respectively, for all series of dose fractions. A comparison of both methods showed that the fractionation effect caused the EUDCTV of a series to be insensitive to EUDCTV-declines per dose fraction, and this could be explained by the small size and spatial variations of cold spots. Therefore, ART for each dose fraction is unnecessary, and selective ART for fractions with large inter-fractional deformations alone is sufficient for maintaining a high EUDCTV for a radiotherapy series.

3.
JAMA Netw Open ; 6(3): e234066, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36947038

RESUMEN

Importance: Patients with newly diagnosed locally advanced cervical carcinomas or recurrences after surgery undergoing radiochemotherapy whose tumor is unsuited for a brachytherapy boost need high-dose percutaneous radiotherapy with small margins to compensate for clinical target volume deformations and set-up errors. Cone-beam computed tomography-based online adaptive radiotherapy (ART) has the potential to reduce planning target volume (PTV) margins below 5 mm for these tumors. Objective: To compare online ART technologies with image-guided radiotherapy (IGRT) for gynecologic tumors. Design, Setting, and Participants: This comparative effectiveness study comprised all 7 consecutive patients with gynecologic tumors who were treated with ART with artificial intelligence segmentation from January to May 2022 at the West German Cancer Center. All adapted treatment plans were reviewed for the new scenario of organs at risk and target volume. Dose distributions of adapted and scheduled plans optimized on the initial planning computed tomography scan were compared. Exposure: Online ART for gynecologic tumors. Main Outcomes and Measures: Target dose coverage with ART compared with IGRT for PTV margins of 5 mm or less in terms of the generalized equivalent uniform dose (gEUD) without increasing the gEUD for the organs at risk (bladder and rectum). Results: The first 10 treatment series among 7 patients (mean [SD] age, 65.7 [16.5] years) with gynecologic tumors from a prospective observational trial performed with ART were compared with IGRT. For a clinical PTV margin of 5 mm, IGRT was associated with a median gEUD decrease in the interfractional clinical target volume of -1.5% (90% CI, -31.8% to 2.9%) for all fractions in comparison with the planned dose distribution. Online ART was associated with a decrease of -0.02% (90% CI, -3.2% to 1.5%), which was less than the decrease with IGRT (P < .001). This was not associated with an increase in the gEUD for the bladder or rectum. For a PTV margin of 0 mm, the median gEUD deviation with IGRT was -13.1% (90% CI, -47.9% to 1.6%) compared with 0.1% (90% CI, -2.3% to 6.6%) with ART (P < .001). The benefit associated with ART was larger for a PTV margin of 0 mm than of 5 mm (P = .004) due to spreading of the cold spot at the clinical target volume margin from fraction to fraction with a median SD of 2.4 cm (90% CI, 1.9-3.4 cm) for all patients. Conclusions and Relevance: This study suggests that ART is associated with an improvement in the percentage deviation of gEUD for the interfractional clinical target volume compared with IGRT. As the gain of ART depends on fractionation and PTV margin, a strategy is proposed here to switch from IGRT to ART, if the delivered gEUD distribution becomes unfavorable in comparison with the expected distribution during the course of treatment.


Asunto(s)
Neoplasias de los Genitales Femeninos , Radioterapia Guiada por Imagen , Radioterapia de Intensidad Modulada , Humanos , Femenino , Anciano , Radioterapia Guiada por Imagen/métodos , Neoplasias de los Genitales Femeninos/diagnóstico por imagen , Neoplasias de los Genitales Femeninos/radioterapia , Inteligencia Artificial , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/métodos
4.
Sci Rep ; 12(1): 17511, 2022 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-36266403

RESUMEN

Accurate determination of lymph-node (LN) metastases is a prerequisite for high precision radiotherapy. The primary aim is to characterise the performance of PET/CT-based machine-learning classifiers to predict LN-involvement by endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) in stage-III NSCLC. Prediction models for LN-positivity based on [18F]FDG-PET/CT features were built using logistic regression and machine-learning models random forest (RF) and multilayer perceptron neural network (MLP) for stage-III NSCLC before radiochemotherapy. A total of 675 LN-stations were sampled in 180 patients. The logistic and RF models identified SUVmax, the short-axis LN-diameter and the echelon of the considered LN among the most important parameters for EBUS-positivity. Adjusting the sensitivity of machine-learning classifiers to that of the expert-rater of 94.5%, MLP (P = 0.0061) and RF models (P = 0.038) showed lower misclassification rates (MCR) than the standard-report, weighting false positives and false negatives equally. Increasing the sensitivity of classifiers from 94.5 to 99.3% resulted in increase of MCR from 13.3/14.5 to 29.8/34.2% for MLP/RF, respectively. PET/CT-based machine-learning classifiers can achieve a high sensitivity (94.5%) to detect EBUS-positive LNs at a low misclassification rate. As the specificity decreases rapidly above that level, a combined test of a PET/CT-based MLP/RF classifier and EBUS-TBNA is recommended for radiation target volume definition.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Fluorodesoxiglucosa F18 , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/patología , Estadificación de Neoplasias , Carcinoma de Pulmón de Células no Pequeñas/patología , Ganglios Linfáticos/diagnóstico por imagen , Ganglios Linfáticos/patología , Metástasis Linfática/patología , Aprendizaje Automático , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...