Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS Pathog ; 20(4): e1012122, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38558079

RESUMEN

Lyme disease is a tick-borne infection caused by the spirochete Borrelia (Borreliella) burgdorferi. Borrelia species have highly fragmented genomes composed of a linear chromosome and a constellation of linear and circular plasmids some of which are required throughout the enzootic cycle. Included in this plasmid repertoire by almost all Lyme disease spirochetes are the 32-kb circular plasmid cp32 prophages that are capable of lytic replication to produce infectious virions called ϕBB-1. While the B. burgdorferi genome contains evidence of horizontal transfer, the mechanisms of gene transfer between strains remain unclear. While we know that ϕBB-1 transduces cp32 and shuttle vector DNA during in vitro cultivation, the extent of ϕBB-1 DNA transfer is not clear. Herein, we use proteomics and long-read sequencing to further characterize ϕBB-1 virions. Our studies identified the cp32 pac region and revealed that ϕBB-1 packages linear cp32s via a headful mechanism with preferential packaging of plasmids containing the cp32 pac region. Additionally, we find ϕBB-1 packages fragments of the linear chromosome and full-length plasmids including lp54, cp26, and others. Furthermore, sequencing of ϕBB-1 packaged DNA allowed us to resolve the covalently closed hairpin telomeres for the linear B. burgdorferi chromosome and most linear plasmids in strain CA-11.2A. Collectively, our results shed light on the biology of the ubiquitous ϕBB-1 phage and further implicates ϕBB-1 in the generalized transduction of diverse genes and the maintenance of genetic diversity in Lyme disease spirochetes.


Asunto(s)
Bacteriófagos , Borrelia burgdorferi , Enfermedad de Lyme , Humanos , Borrelia burgdorferi/genética , Bacteriófagos/genética , Plásmidos/genética , Enfermedad de Lyme/genética , Genómica , ADN
2.
bioRxiv ; 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38260645

RESUMEN

Viruses compete with each other for limited cellular resources, and some viruses deliver defense mechanisms that protect the host from competing genetic parasites. PARIS is a defense system, often encoded in viral genomes, that is composed of a 53 kDa ABC ATPase (AriA) and a 35 kDa TOPRIM nuclease (AriB). Here we show that AriA and AriB assemble into a 425 kDa supramolecular immune complex. We use cryo-EM to determine the structure of this complex which explains how six molecules of AriA assemble into a propeller-shaped scaffold that coordinates three subunits of AriB. ATP-dependent detection of foreign proteins triggers the release of AriB, which assembles into a homodimeric nuclease that blocks infection by cleaving the host tRNALys. Phage T5 subverts PARIS immunity through expression of a tRNALys variant that prevents PARIS-mediated cleavage, and thereby restores viral infection. Collectively, these data explain how AriA functions as an ATP-dependent sensor that detects viral proteins and activates the AriB toxin. PARIS is one of an emerging set of immune systems that form macromolecular complexes for the recognition of foreign proteins, rather than foreign nucleic acids.

3.
bioRxiv ; 2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-38260690

RESUMEN

Lyme disease is a tick-borne infection caused by the spirochete Borrelia (Borreliella) burgdorferi. Borrelia species have highly fragmented genomes composed of a linear chromosome and a constellation of linear and circular plasmids some of which are required throughout the enzootic cycle. Included in this plasmid repertoire by almost all Lyme disease spirochetes are the 32-kb circular plasmid cp32 prophages that are capable of lytic replication to produce infectious virions called ϕBB-1. While the B. burgdorferi genome contains evidence of horizontal transfer, the mechanisms of gene transfer between strains remain unclear. While we know that ϕBB-1 transduces cp32 and shuttle vector DNA during in vitro cultivation, the extent of ϕBB-1 DNA transfer is not clear. Herein, we use proteomics and long-read sequencing to further characterize ϕBB-1 virions. Our studies identified the cp32 pac region and revealed that ϕBB-1 packages linear cp32s via a headful mechanism with preferentially packaging of plasmids containing the cp32 pac region. Additionally, we find ϕBB-1 packages fragments of the linear chromosome and full-length plasmids including lp54, cp26, and others. Furthermore, sequencing of ϕBB-1 packaged DNA allowed us to resolve the covalently closed hairpin telomeres for the linear B. burgdorferi chromosome and most linear plasmids in strain CA-11.2A. Collectively, our results shed light on the biology of the ubiquitous ϕBB-1 phage and further implicates ϕBB-1 in the generalized transduction of diverse genes and the maintenance of genetic diversity in Lyme disease spirochetes.

4.
Nat Struct Mol Biol ; 30(11): 1675-1685, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37710013

RESUMEN

Bacteria and archaea acquire resistance to viruses and plasmids by integrating fragments of foreign DNA into the first repeat of a CRISPR array. However, the mechanism of site-specific integration remains poorly understood. Here, we determine a 560-kDa integration complex structure that explains how Pseudomonas aeruginosa Cas (Cas1-Cas2/3) and non-Cas proteins (for example, integration host factor) fold 150 base pairs of host DNA into a U-shaped bend and a loop that protrude from Cas1-2/3 at right angles. The U-shaped bend traps foreign DNA on one face of the Cas1-2/3 integrase, while the loop places the first CRISPR repeat in the Cas1 active site. Both Cas3 proteins rotate 100 degrees to expose DNA-binding sites on either side of the Cas2 homodimer, which each bind an inverted repeat motif in the leader. Leader sequence motifs direct Cas1-2/3-mediated integration to diverse repeat sequences that have a 5'-GT. Collectively, this work reveals new DNA-binding surfaces on Cas2 that are critical for DNA folding and site-specific delivery of foreign DNA.


Asunto(s)
Proteínas Asociadas a CRISPR , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Proteínas Asociadas a CRISPR/metabolismo , ADN/química , Sitios de Unión , Plásmidos , Sistemas CRISPR-Cas/genética
5.
CRISPR J ; 6(2): 152-162, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36912817

RESUMEN

Cas10 proteins are large subunits of type III CRISPR RNA (crRNA)-guided surveillance complexes, many of which have nuclease and cyclase activities. Here, we use computational and phylogenetic methods to identify and analyze 2014 Cas10 sequences from genomic and metagenomic databases. Cas10 proteins cluster into five distinct clades that mirror previously established CRISPR-Cas subtypes. Most Cas10 proteins (85.0%) have conserved polymerase active-site motifs, while HD-nuclease domains are less well conserved (36.0%). We identify Cas10 variants that are split over multiple genes or genetically fused to nucleases activated by cyclic nucleotides (i.e., NucC) or components of toxin-antitoxin systems (i.e., AbiEii). To clarify the functional diversification of Cas10 proteins, we cloned, expressed, and purified five representatives from three phylogenetically distinct clades. None of the Cas10s are functional cyclases in isolation, and activity assays performed with polymerase domain active site mutants indicate that previously reported Cas10 DNA-polymerase activity may be a result of contamination. Collectively, this work helps clarify the phylogenetic and functional diversity of Cas10 proteins in type III CRISPR systems.


Asunto(s)
Proteínas Asociadas a CRISPR , Edición Génica , Sistemas CRISPR-Cas/genética , Proteínas Asociadas a CRISPR/metabolismo , Filogenia , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
6.
Nat Commun ; 13(1): 7762, 2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-36522348

RESUMEN

Type-III CRISPR-Cas systems have recently been adopted for sequence-specific detection of SARS-CoV-2. Here, we repurpose the type III-A CRISPR complex from Thermus thermophilus (TtCsm) for programmable capture and concentration of specific RNAs from complex mixtures. The target bound TtCsm complex generates two cyclic oligoadenylates (i.e., cA3 and cA4) that allosterically activate ancillary nucleases. We show that both Can1 and Can2 nucleases cleave single-stranded RNA, single-stranded DNA, and double-stranded DNA in the presence of cA4. We integrate the Can2 nuclease with type III-A RNA capture and concentration for direct detection of SARS-CoV-2 RNA in nasopharyngeal swabs with 15 fM sensitivity. Collectively, this work demonstrates how type-III CRISPR-based RNA capture and concentration simultaneously increases sensitivity, limits time to result, lowers cost of the assay, eliminates solvents used for RNA extraction, and reduces sample handling.


Asunto(s)
COVID-19 , Sistemas CRISPR-Cas , ARN Viral , Humanos , COVID-19/diagnóstico , ADN , Endonucleasas/metabolismo , ARN Viral/aislamiento & purificación , SARS-CoV-2 , Thermus thermophilus
7.
Methods ; 205: 1-10, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35690249

RESUMEN

Polymerase Chain Reaction (PCR) is the reigning gold standard for molecular diagnostics. However, the SARS-CoV-2 pandemic reveals an urgent need for new diagnostics that provide users with immediate results without complex procedures or sophisticated equipment. These new demands have stimulated a tsunami of innovations that improve turnaround times without compromising the specificity and sensitivity that has established PCR as the paragon of diagnostics. Here we briefly introduce the origins of PCR and isothermal amplification, before turning to the emergence of CRISPR-Cas and Argonaute proteins, which are being coupled to fluorimeters, spectrometers, microfluidic devices, field-effect transistors, and amperometric biosensors, for a new generation of nucleic acid-based diagnostics.


Asunto(s)
Proteínas Argonautas , Sistemas CRISPR-Cas , Técnicas de Amplificación de Ácido Nucleico , Reacción en Cadena de la Polimerasa , Proteínas Argonautas/genética , Sistemas CRISPR-Cas/genética , Humanos , Técnicas de Amplificación de Ácido Nucleico/métodos
8.
Nat Commun ; 13(1): 2449, 2022 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-35508531

RESUMEN

Hundreds of bacterial small RNAs (sRNAs) require the Hfq chaperone to regulate mRNA expression. Hfq is limiting, thus competition among sRNAs for binding to Hfq shapes the proteomes of individual cells. To understand how sRNAs compete for a common partner, we present a single-molecule fluorescence platform to simultaneously visualize binding and release of multiple sRNAs with Hfq. We show that RNA residents rarely dissociate on their own. Instead, clashes between residents and challengers on the same face of Hfq cause rapid exchange, whereas RNAs that recognize different surfaces may cohabit Hfq for several minutes before one RNA departs. The prevalence of these pathways depends on the structure of each RNA and how it interacts with Hfq. We propose that sRNA diversity creates many pairwise interactions with Hfq that allow for distinct biological outcomes: active exchange favors fast regulation whereas co-residence of dissimilar RNAs favors target co-recognition or target exclusion.


Asunto(s)
Proteínas de Escherichia coli , ARN Pequeño no Traducido , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Proteína de Factor 1 del Huésped/química , Chaperonas Moleculares/metabolismo , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Pequeño no Traducido/metabolismo
9.
Res Sq ; 2022 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-35475170

RESUMEN

Type-III CRISPR-Cas systems have recently been adopted for sequence-specific detection of SARS-CoV-2. Here, we make two major advances that simultaneously limit sample handling and significantly enhance the sensitivity of SARS-CoV-2 RNA detection directly from patient samples. First, we repurpose the type III-A CRISPR complex from Thermus thermophilus (TtCsm) for programmable capture and concentration of specific RNAs from complex mixtures. The target bound TtCsm complex primarily generates two cyclic oligoadenylates (i.e., cA3 and cA4) that allosterically activate ancillary nucleases. To improve sensitivity of the diagnostic, we identify and test several ancillary nucleases (i.e., Can1, Can2, and NucC). We show that Can1 and Can2 are activated by both cA3 and cA4, and that different activators trigger changes in the substrate specificity of these nucleases. Finally, we integrate the type III-A CRISPR RNA-guided capture technique with the Can2 nuclease for 90 fM (5x104 copies/ul) detection of SARS-CoV-2 RNA directly from nasopharyngeal swab samples.

10.
Curr Biol ; 31(16): 3515-3524.e6, 2021 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-34174210

RESUMEN

CRISPR-associated proteins (Cas1 and Cas2) integrate foreign DNA at the "leader" end of CRISPR loci. Several CRISPR leader sequences are reported to contain a binding site for a DNA-bending protein called integration host factor (IHF). IHF-induced DNA bending kinks the leader of type I-E CRISPRs, recruiting an upstream sequence motif that helps dock Cas1-2 onto the first repeat of the CRISPR locus. To determine the prevalence of IHF-directed CRISPR adaptation, we analyzed 15,274 bacterial and archaeal CRISPR leaders. These experiments reveal multiple IHF binding sites and diverse upstream sequence motifs in a subset of the I-C, I-E, I-F, and II-C CRISPR leaders. We identify subtype-specific motifs and show that the phase of these motifs is critical for CRISPR adaptation. Collectively, this work clarifies the prevalence and mechanism(s) of IHF-dependent CRISPR adaptation and suggests that leader sequences and adaptation proteins may coevolve under the selective pressures of foreign genetic elements like plasmids or phages.


Asunto(s)
Proteínas Asociadas a CRISPR , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Proteínas Asociadas a CRISPR/genética , Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , ADN , Endonucleasas/genética , Endonucleasas/metabolismo
11.
Cell Rep Med ; 2(6): 100319, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34075364

RESUMEN

There is an urgent need for inexpensive new technologies that enable fast, reliable, and scalable detection of viruses. Here, we repurpose the type III CRISPR-Cas system for sensitive and sequence-specific detection of SARS-CoV-2. RNA recognition by the type III CRISPR complex triggers Cas10-mediated polymerase activity, which simultaneously generates pyrophosphates, protons, and cyclic oligonucleotides. We show that all three Cas10-polymerase products are detectable using colorimetric or fluorometric readouts. We design ten guide RNAs that target conserved regions of SARS-CoV-2 genomes. Multiplexing improves the sensitivity of amplification-free RNA detection from 107 copies/µL for a single guide RNA to 106 copies/µL for ten guides. To decrease the limit of detection to levels that are clinically relevant, we developed a two-pot reaction consisting of RT-LAMP followed by T7-transcription and type III CRISPR-based detection. The two-pot reaction has a sensitivity of 200 copies/µL and is completed using patient samples in less than 30 min.


Asunto(s)
Prueba de Ácido Nucleico para COVID-19/métodos , COVID-19/diagnóstico , Sistemas CRISPR-Cas/genética , ARN Viral/metabolismo , COVID-19/virología , Colorimetría , Humanos , Técnicas de Diagnóstico Molecular , Nasofaringe/virología , Técnicas de Amplificación de Ácido Nucleico , ARN Guía de Kinetoplastida/metabolismo , ARN Viral/química , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/metabolismo
12.
Nat Commun ; 11(1): 2730, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32483187

RESUMEN

Bacteria have evolved sophisticated adaptive immune systems, called CRISPR-Cas, that provide sequence-specific protection against phage infection. In turn, phages have evolved a broad spectrum of anti-CRISPRs that suppress these immune systems. Here we report structures of anti-CRISPR protein IF9 (AcrIF9) in complex with the type I-F CRISPR RNA-guided surveillance complex (Csy). In addition to sterically blocking the hybridization of complementary dsDNA to the CRISPR RNA, our results show that AcrIF9 binding also promotes non-sequence-specific engagement with dsDNA, potentially sequestering the complex from target DNA. These findings highlight the versatility of anti-CRISPR mechanisms utilized by phages to suppress CRISPR-mediated immune systems.


Asunto(s)
Bacterias/metabolismo , Bacteriófagos/metabolismo , Sistemas CRISPR-Cas , ADN/metabolismo , ARN Guía de Kinetoplastida/metabolismo , Proteínas Virales/metabolismo , Secuencia de Aminoácidos , Bacterias/genética , Bacterias/virología , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Bacteriófagos/genética , Microscopía por Crioelectrón , ADN/química , ADN/genética , Modelos Moleculares , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Complejos Multiproteicos/ultraestructura , Conformación de Ácido Nucleico , Unión Proteica , Conformación Proteica , Proteus penneri/genética , Proteus penneri/metabolismo , Proteus penneri/virología , ARN Guía de Kinetoplastida/química , ARN Guía de Kinetoplastida/genética , Homología de Secuencia de Aminoácido , Proteínas Virales/química , Proteínas Virales/genética
13.
Methods Mol Biol ; 2106: 19-39, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31889249

RESUMEN

Diverse types of RNA-binding proteins chaperone the interactions of noncoding RNAs by increasing the rate of RNA base pairing and by stabilizing the final RNA duplex. The E. coli protein Hfq facilitates interactions between small noncoding RNAs and their target mRNAs. The chaperone and RNA annealing activity of Hfq and other RNA chaperones can be evaluated by determining the kinetics of RNA base pairing in the presence and absence of the protein. This chapter presents protocols for measuring RNA annealing kinetics using electrophoretic gel mobility shift assays (EMSA), stopped-flow fluorescence, and fluorescence anisotropy. EMSA is low cost and can resolve reaction intermediates of natural small RNAs and mRNA fragments, as long as the complexes are sufficiently long-lived (≥10 s) to be trapped during electrophoresis. Stopped-flow fluorescence can detect annealing reactions between 1 ms and 30 s and is best suited for measuring the rapid annealing of oligoribonucleotides. Fluorescence anisotropy reports the physical size of the complex and is well-suited for monitoring the association and dissociation of RNA from Hfq during the chaperone cycle.


Asunto(s)
Ensayo de Cambio de Movilidad Electroforética/métodos , Chaperonas Moleculares/metabolismo , ARN/metabolismo , Animales , Polarización de Fluorescencia/métodos , Humanos , Chaperonas Moleculares/química , ARN/química , Estabilidad del ARN
14.
Proc Natl Acad Sci U S A ; 116(22): 10978-10987, 2019 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-31076551

RESUMEN

We have solved the X-ray crystal structure of the RNA chaperone protein Hfq from the alpha-proteobacterium Caulobacter crescentus to 2.15-Å resolution, resolving the conserved core of the protein and the entire C-terminal domain (CTD). The structure reveals that the CTD of neighboring hexamers pack in crystal contacts, and that the acidic residues at the C-terminal tip of the protein interact with positive residues on the rim of Hfq, as has been recently proposed for a mechanism of modulating RNA binding. De novo computational models predict a similar docking of the acidic tip residues against the core of Hfq. We also show that C. crescentus Hfq has sRNA binding and RNA annealing activities and is capable of facilitating the annealing of certain Escherichia coli sRNA:mRNA pairs in vivo. Finally, we describe how the Hfq CTD and its acidic tip residues provide a mechanism to modulate annealing activity and substrate specificity in various bacteria.


Asunto(s)
Proteínas Bacterianas , Caulobacter crescentus , Proteína de Factor 1 del Huésped , ARN Bacteriano , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Caulobacter crescentus/química , Caulobacter crescentus/genética , Caulobacter crescentus/metabolismo , Cristalografía por Rayos X , Proteína de Factor 1 del Huésped/química , Proteína de Factor 1 del Huésped/metabolismo , Modelos Moleculares , Chaperonas Moleculares , Unión Proteica , ARN Bacteriano/química , ARN Bacteriano/metabolismo , ARN Mensajero/química , ARN Mensajero/metabolismo , ARN Pequeño no Traducido/química , ARN Pequeño no Traducido/metabolismo
15.
Mol Cell ; 74(1): 132-142.e5, 2019 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-30872121

RESUMEN

Bacteria and archaea have evolved sophisticated adaptive immune systems that rely on CRISPR RNA (crRNA)-guided detection and nuclease-mediated elimination of invading nucleic acids. Here, we present the cryo-electron microscopy (cryo-EM) structure of the type I-F crRNA-guided surveillance complex (Csy complex) from Pseudomonas aeruginosa bound to a double-stranded DNA target. Comparison of this structure to previously determined structures of this complex reveals a ∼180-degree rotation of the C-terminal helical bundle on the "large" Cas8f subunit. We show that the double-stranded DNA (dsDNA)-induced conformational change in Cas8f exposes a Cas2/3 "nuclease recruitment helix" that is structurally homologous to a virally encoded anti-CRISPR protein (AcrIF3). Structural homology between Cas8f and AcrIF3 suggests that AcrIF3 is a mimic of the Cas8f nuclease recruitment helix.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , ADN Bacteriano/metabolismo , Imitación Molecular , Pseudomonas aeruginosa/enzimología , ARN Bacteriano/metabolismo , ARN Guía de Kinetoplastida/metabolismo , Proteínas Virales/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/inmunología , Proteínas Asociadas a CRISPR/química , Proteínas Asociadas a CRISPR/genética , Proteínas Asociadas a CRISPR/inmunología , Microscopía por Crioelectrón , ADN Bacteriano/química , ADN Bacteriano/genética , Modelos Moleculares , Conformación de Ácido Nucleico , Conformación Proteica , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/inmunología , ARN Bacteriano/química , ARN Bacteriano/genética , ARN Guía de Kinetoplastida/química , ARN Guía de Kinetoplastida/genética , Relación Estructura-Actividad , Proteínas Virales/química , Proteínas Virales/genética , Proteínas Virales/inmunología
17.
Microbiol Spectr ; 6(4)2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-30051798

RESUMEN

RNA-binding proteins chaperone the biological functions of noncoding RNA by reducing RNA misfolding, improving matchmaking between regulatory RNA and targets, and exerting quality control over RNP biogenesis. Recent studies of Escherichia coli CspA, HIV NCp, and E. coli Hfq are beginning to show how RNA-binding proteins remodel RNA structures. These different protein families use common strategies for disrupting or annealing RNA double helices, which can be used to understand the mechanisms by which proteins chaperone RNA-dependent regulation in bacteria.


Asunto(s)
Chaperonas Moleculares/metabolismo , ARN Bacteriano/metabolismo , Proteínas de Unión al ARN/metabolismo , Bacterias/metabolismo , Proteínas y Péptidos de Choque por Frío/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Proteína de Factor 1 del Huésped/metabolismo , Conformación de Ácido Nucleico , Dominios y Motivos de Interacción de Proteínas , Pliegue del ARN , ARN Pequeño no Traducido/metabolismo
18.
Wiley Interdiscip Rev RNA ; 9(4): e1475, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29633565

RESUMEN

Hfq is a ubiquitous, Sm-like RNA binding protein found in most bacteria and some archaea. Hfq binds small regulatory RNAs (sRNAs), facilitates base pairing between sRNAs and their mRNA targets, and directly binds and regulates translation of certain mRNAs. Because sRNAs regulate many stress response pathways in bacteria, Hfq is essential for adaptation to different environments and growth conditions. The chaperone activities of Hfq arise from multipronged RNA binding by three different surfaces of the Hfq hexamer. The manner in which the structured Sm core of Hfq binds RNA has been well studied, but recent work shows that the intrinsically disordered C-terminal domain of Hfq modulates sRNA binding, creating a kinetic hierarchy of RNA competition for Hfq and ensuring the release of double-stranded sRNA-mRNA complexes. A combination of structural, biophysical, and genetic experiments reveals how Hfq recognizes its RNA substrates and plays matchmaker for sRNAs and mRNAs in the cell. The interplay between structured and disordered domains of Hfq optimizes sRNA-mediated post-transcriptional regulation, and is a common theme in RNA chaperones. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Structure and Dynamics > RNA Structure, Dynamics, and Chemistry.


Asunto(s)
Bacterias/genética , Bacterias/metabolismo , Proteína de Factor 1 del Huésped/metabolismo , Chaperonas Moleculares/metabolismo , ARN Bacteriano/metabolismo , ARN Mensajero/metabolismo , ARN Pequeño no Traducido/metabolismo , Procesamiento Postranscripcional del ARN , ARN Bacteriano/genética , ARN Mensajero/genética , ARN Pequeño no Traducido/genética
19.
Elife ; 62017 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-28826489

RESUMEN

The RNA chaperone Hfq is an Sm protein that facilitates base pairing between bacterial small RNAs (sRNAs) and mRNAs involved in stress response and pathogenesis. Hfq possesses an intrinsically disordered C-terminal domain (CTD) that may tune the function of the Sm domain in different organisms. In Escherichia coli, the Hfq CTD increases kinetic competition between sRNAs and recycles Hfq from the sRNA-mRNA duplex. Here, de novo Rosetta modeling and competitive binding experiments show that the acidic tip of the E. coli Hfq CTD transiently binds the basic Sm core residues necessary for RNA annealing. The CTD tip competes against non-specific RNA binding, facilitates dsRNA release, and prevents indiscriminate DNA aggregation, suggesting that this acidic peptide mimics nucleic acid to auto-regulate RNA binding to the Sm ring. The mechanism of CTD auto-inhibition predicts the chaperone function of Hfq in bacterial genera and illuminates how Sm proteins may evolve new functions.


Asunto(s)
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Proteína de Factor 1 del Huésped/química , Proteína de Factor 1 del Huésped/metabolismo , ARN Bacteriano/metabolismo , Cristalografía por Rayos X , Modelos Moleculares , Unión Proteica , Conformación Proteica , Dominios Proteicos
20.
Proc Natl Acad Sci U S A ; 113(41): E6089-E6096, 2016 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-27681631

RESUMEN

The bacterial Sm protein and RNA chaperone Hfq stabilizes small noncoding RNAs (sRNAs) and facilitates their annealing to mRNA targets involved in stress tolerance and virulence. Although an arginine patch on the Sm core is needed for Hfq's RNA chaperone activity, the function of Hfq's intrinsically disordered C-terminal domain (CTD) has remained unclear. Here, we use stopped flow spectroscopy to show that the CTD of Escherichia coli Hfq is not needed to accelerate RNA base pairing but is required for the release of dsRNA. The Hfq CTD also mediates competition between sRNAs, offering a kinetic advantage to sRNAs that contact both the proximal and distal faces of the Hfq hexamer. The change in sRNA hierarchy caused by deletion of the Hfq CTD in E. coli alters the sRNA accumulation and the kinetics of sRNA regulation in vivo. We propose that the Hfq CTD displaces sRNAs and annealed sRNA⋅mRNA complexes from the Sm core, enabling Hfq to chaperone sRNA-mRNA interactions and rapidly cycle between competing targets in the cell.


Asunto(s)
Proteína de Factor 1 del Huésped/química , Proteína de Factor 1 del Huésped/metabolismo , Dominios y Motivos de Interacción de Proteínas , ARN Mensajero/metabolismo , ARN Pequeño no Traducido/metabolismo , Emparejamiento Base , Proteína de Factor 1 del Huésped/genética , Cinética , Conformación de Ácido Nucleico , Unión Proteica , Estabilidad del ARN , ARN Mensajero/genética , ARN Pequeño no Traducido/química , ARN Pequeño no Traducido/genética , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas Recombinantes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA