Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Clin Invest ; 131(15)2021 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-34338228

RESUMEN

Endothelial-mesenchymal transition (EndMT) is associated with various cardiovascular diseases and in particular with atherosclerosis and plaque instability. However, the molecular pathways that govern EndMT are poorly defined. Specifically, the role of epigenetic factors and histone deacetylases (HDACs) in controlling EndMT and the atherosclerotic plaque phenotype remains unclear. Here, we identified histone deacetylation, specifically that mediated by HDAC9 (a class IIa HDAC), as playing an important role in both EndMT and atherosclerosis. Using in vitro models, we found class IIa HDAC inhibition sustained the expression of endothelial proteins and mitigated the increase in mesenchymal proteins, effectively blocking EndMT. Similarly, ex vivo genetic knockout of Hdac9 in endothelial cells prevented EndMT and preserved a more endothelial-like phenotype. In vivo, atherosclerosis-prone mice with endothelial-specific Hdac9 knockout showed reduced EndMT and significantly reduced plaque area. Furthermore, these mice displayed a more favorable plaque phenotype, with reduced plaque lipid content and increased fibrous cap thickness. Together, these findings indicate that HDAC9 contributes to vascular pathology by promoting EndMT. Our study provides evidence for a pathological link among EndMT, HDAC9, and atherosclerosis and suggests that targeting of HDAC9 may be beneficial for plaque stabilization or slowing the progression of atherosclerotic disease.


Asunto(s)
Aterosclerosis/enzimología , Endotelio/enzimología , Histona Desacetilasas/metabolismo , Placa Aterosclerótica/enzimología , Proteínas Represoras/metabolismo , Animales , Aterosclerosis/genética , Aterosclerosis/patología , Endotelio/patología , Histona Desacetilasas/genética , Células Endoteliales de la Vena Umbilical Humana , Humanos , Ratones , Ratones Noqueados para ApoE , Placa Aterosclerótica/genética , Placa Aterosclerótica/patología , Proteínas Represoras/genética
2.
Mol Ther ; 29(10): 3042-3058, 2021 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-34332145

RESUMEN

Reprogramming non-cardiomyocytes (non-CMs) into cardiomyocyte (CM)-like cells is a promising strategy for cardiac regeneration in conditions such as ischemic heart disease. Here, we used a modified mRNA (modRNA) gene delivery platform to deliver a cocktail, termed 7G-modRNA, of four cardiac-reprogramming genes-Gata4 (G), Mef2c (M), Tbx5 (T), and Hand2 (H)-together with three reprogramming-helper genes-dominant-negative (DN)-TGFß, DN-Wnt8a, and acid ceramidase (AC)-to induce CM-like cells. We showed that 7G-modRNA reprogrammed 57% of CM-like cells in vitro. Through a lineage-tracing model, we determined that delivering the 7G-modRNA cocktail at the time of myocardial infarction reprogrammed ∼25% of CM-like cells in the scar area and significantly improved cardiac function, scar size, long-term survival, and capillary density. Mechanistically, we determined that while 7G-modRNA cannot create de novo beating CMs in vitro or in vivo, it can significantly upregulate pro-angiogenic mesenchymal stromal cells markers and transcription factors. We also demonstrated that our 7G-modRNA cocktail leads to neovascularization in ischemic-limb injury, indicating CM-like cells importance in other organs besides the heart. modRNA is currently being used around the globe for vaccination against COVID-19, and this study proves this is a safe, highly efficient gene delivery approach with therapeutic potential to treat ischemic diseases.


Asunto(s)
Reprogramación Celular/genética , Terapia Genética/métodos , Isquemia/terapia , Músculo Esquelético/irrigación sanguínea , Infarto del Miocardio/terapia , Neovascularización Fisiológica/genética , Regeneración/genética , Transfección/métodos , Animales , Animales Recién Nacidos , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Fibroblastos/metabolismo , Humanos , Masculino , Ratones , Ratones Noqueados para ApoE , Miocitos Cardíacos/metabolismo , ARN Mensajero/genética
3.
Cell Rep ; 30(2): 555-570.e7, 2020 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-31940496

RESUMEN

PDGFRα+ mesenchymal progenitor cells are associated with pathological fibro-adipogenic processes. Conversely, a beneficial role for these cells during homeostasis or in response to revascularization and regeneration stimuli is suggested, but remains to be defined. We studied the molecular profile and function of PDGFRα+ cells in order to understand the mechanisms underlying their role in fibrosis versus regeneration. We show that PDGFRα+ cells are essential for tissue revascularization and restructuring through injury-stimulated remodeling of stromal and vascular components, context-dependent clonal expansion, and ultimate removal of pro-fibrotic PDGFRα+-derived cells. Tissue ischemia modulates the PDGFRα+ phenotype toward cells capable of remodeling the extracellular matrix and inducing cell-cell and cell-matrix adhesion, likely favoring tissue repair. Conversely, pathological healing occurs if PDGFRα+-derived cells persist as terminally differentiated mesenchymal cells. These studies support a context-dependent "yin-yang" biology of tissue-resident mesenchymal progenitor cells, which possess an innate ability to limit injury expansion while also promoting fibrosis in an unfavorable environment.


Asunto(s)
Fibrosis/metabolismo , Células Madre Mesenquimatosas/metabolismo , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Animales , Diferenciación Celular/fisiología , Células Cultivadas , Femenino , Fibrosis/patología , Células Endoteliales de la Vena Umbilical Humana , Humanos , Masculino , Células Madre Mesenquimatosas/patología , Ratones , Ratones Desnudos , Ratones Transgénicos , Músculo Esquelético/citología , Músculo Esquelético/metabolismo
4.
Stem Cell Reports ; 11(1): 242-257, 2018 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-30008326

RESUMEN

Mesenchymal stem cells (MSCs) reportedly exist in a vascular niche occupying the outer adventitial layer. However, these cells have not been well characterized in vivo in medium- and large-sized arteries in humans, and their potential pathological role is unknown. To address this, healthy and diseased arterial tissues were obtained as surplus surgical specimens and freshly processed. We identified that CD90 marks a rare adventitial population that co-expresses MSC markers including PDGFRα, CD44, CD73, and CD105. However, unlike CD90, these additional markers were widely expressed by other cells. Human adventitial CD90+ cells fulfilled standard MSC criteria, including plastic adherence, spindle morphology, passage ability, colony formation, and differentiation into adipocytes, osteoblasts, and chondrocytes. Phenotypic and transcriptomic profiling, as well as adoptive transfer experiments, revealed a potential role in vascular disease pathogenesis, with the transcriptomic disease signature of these cells being represented in an aortic regulatory gene network that is operative in atherosclerosis.


Asunto(s)
Arterias/embriología , Arterias/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Antígenos Thy-1/genética , Biomarcadores , Diferenciación Celular/genética , Perfilación de la Expresión Génica , Humanos , Inmunofenotipificación , Isquemia/etiología , Isquemia/metabolismo , Neovascularización Fisiológica/genética , Antígenos Thy-1/metabolismo
5.
Development ; 143(8): 1242-58, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-27095490

RESUMEN

Over the past two decades, several populations of cardiac stem cells have been described in the adult mammalian heart. For the most part, however, their lineage origins and in vivo functions remain largely unexplored. This Review summarizes what is known about different populations of embryonic and adult cardiac stem cells, including KIT(+), PDGFRα(+), ISL1(+)and SCA1(+)cells, side population cells, cardiospheres and epicardial cells. We discuss their developmental origins and defining characteristics, and consider their possible contribution to heart organogenesis and regeneration. We also summarize the origin and plasticity of cardiac fibroblasts and circulating endothelial progenitor cells, and consider what role these cells have in contributing to cardiac repair.


Asunto(s)
Linaje de la Célula , Miocardio/citología , Células Madre/citología , Células Madre Adultas , Animales , Diferenciación Celular , Células Madre Embrionarias , Humanos
6.
PLoS One ; 8(11): e80268, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24265802

RESUMEN

Serum and glucocorticoid inducible kinase 1 (SGK1) plays a pivotal role in early angiogenesis during embryonic development. In this study, we sought to define the SGK1 downstream signalling pathways in the adult heart and to elucidate their role in cardiac neo-angiogenesis and wound healing after myocardial ischemia. To this end, we employed a viable SGK1 knockout mouse model generated in a 129/SvJ background. Ablation of SGK1 in these mice caused a significant decrease in phosphorylation of SGK1 target protein NDRG1, which correlated with alterations in NF-κB signalling and expression of its downstream target protein, VEGF-A. Disruption of these signalling pathways was accompanied by smaller heart and body size. Moreover, the lack of SGK1 led to defective endothelial cell (ECs) migration and tube formation in vitro, and increased scarring with decreased angiogenesis in vivo after myocardial infarct. This study underscores the importance of SGK1 signalling in cardiac neo-angiogenesis and wound healing after an ischemic insult in vivo.


Asunto(s)
Células Endoteliales/metabolismo , Proteínas Inmediatas-Precoces/metabolismo , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Neovascularización Patológica/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Proteínas de Ciclo Celular/metabolismo , Movimiento Celular/genética , Tamaño de la Célula , Modelos Animales de Enfermedad , Fibrosis , Proteínas Inmediatas-Precoces/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , Ratones Noqueados , Infarto del Miocardio/genética , Isquemia Miocárdica/genética , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , FN-kappa B/metabolismo , Neovascularización Patológica/genética , Fenotipo , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Proteómica , Transducción de Señal
7.
Dis Model Mech ; 6(6): 1470-6, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23929940

RESUMEN

Tamoxifen-inducible Cre-mediated manipulation of animal genomes has achieved wide acceptance over the last decade, with numerous important studies heavily relying on this technique. Recently, a number of groups have reported transient complications of using this protocol in the heart. In the present study we observed a previously unreported focal fibrosis and depressed left-ventricular function in tamoxifen-treated αMHC-MerCreMer-positive animals in a Tß4shRNAflox × αMHC-MerCreMer cross at 6-7 weeks following standard tamoxifen treatment, regardless of the presence of the floxed transgene. The phenotype was reproduced by treating mice from the original αMHC-MerCreMer strain with tamoxifen. In the acute phase after tamoxifen treatment, cell infiltration into the myocardium was accompanied by increased expression of pro-inflammatory cytokines (IL-1ß, IL-6, TNFα, IFNγ, Ccl2) and markers of hypertrophy (ANF, BNP, Col3a1). These observations highlight the requirement for including tamoxifen-treated MerCreMer littermate controls to avert misinterpretation of conditional mutant phenotypes. A survey of the field as well as the protocols presented here suggests that controlling the parameters of tamoxifen delivery is important in avoiding the chronic MerCreMer-mediated cardiac phenotype reported here.


Asunto(s)
Integrasas/metabolismo , Miocardio/enzimología , Animales , Ratones
8.
J Cardiovasc Transl Res ; 5(5): 700-12, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22684511

RESUMEN

The capacity to regenerate damaged tissue and appendages is lost to some extent in higher vertebrates such as mammals, which form a scar tissue at the expenses of tissue reconstitution and functionality. Whereas this process can protect from further damage and elicit fast healing, it can lead to functional deterioration in organs such as the heart. Based on the analyses performed in the last years, stem cell therapies may not be sufficient to induce cardiac regeneration and additional approaches are required to overcome scar formation. Among these, the immune cells and their humoral response have become a key parameter in regenerative processes. In this review, we will describe the recent findings on the possible therapeutical use of progenitor and immune cells to rescue a damaged heart.


Asunto(s)
Cardiopatías/patología , Macrófagos/patología , Miocardio/patología , Miocitos Cardíacos/patología , Regeneración , Células Madre/patología , Animales , Biomarcadores/metabolismo , Proliferación Celular , Fibrosis , Regulación del Desarrollo de la Expresión Génica , Cardiopatías/genética , Cardiopatías/metabolismo , Cardiopatías/fisiopatología , Humanos , Macrófagos/metabolismo , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Fenotipo , Medicina Regenerativa , Transducción de Señal , Células Madre/metabolismo
9.
Dis Model Mech ; 5(4): 481-91, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22563064

RESUMEN

Cardiac fibrosis is critically involved in the adverse remodeling accompanying dilated cardiomyopathies (DCMs), which leads to cardiac dysfunction and heart failure (HF). Connective tissue growth factor (CTGF), a profibrotic cytokine, plays a key role in this deleterious process. Some beneficial effects of IGF1 on cardiomyopathy have been described, but its potential role in improving DCM is less well characterized. We investigated the consequences of expressing a cardiac-specific transgene encoding locally acting IGF1 propeptide (muscle-produced IGF1; mIGF1) on disease progression in a mouse model of DCM [cardiac-specific and inducible serum response factor (SRF) gene disruption] that mimics some forms of human DCM. Cardiac-specific mIGF1 expression substantially extended the lifespan of SRF mutant mice, markedly improved cardiac functions, and delayed both DCM and HF. These protective effects were accompanied by an overall improvement in cardiomyocyte architecture and a massive reduction of myocardial fibrosis with a concomitant amelioration of inflammation. At least some of the beneficial effects of mIGF1 transgene expression were due to mIGF1 counteracting the strong increase in CTGF expression within cardiomyocytes caused by SRF deficiency, resulting in the blockade of fibroblast proliferation and related myocardial fibrosis. These findings demonstrate that SRF plays a key role in the modulation of cardiac fibrosis through repression of cardiomyocyte CTGF expression in a paracrine fashion. They also explain how impaired SRF function observed in human HF promotes fibrosis and adverse cardiac remodeling. Locally acting mIGF1 efficiently protects the myocardium from these adverse processes, and might thus represent a therapeutic avenue to counter DCM.


Asunto(s)
Cardiomiopatía Dilatada/fisiopatología , Factor de Crecimiento del Tejido Conjuntivo/metabolismo , Corazón/fisiopatología , Factor I del Crecimiento Similar a la Insulina/metabolismo , Miocardio/patología , Péptidos/metabolismo , Factor de Respuesta Sérica/metabolismo , Animales , Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/patología , Proliferación Celular , Fibrosis , Regulación de la Expresión Génica , Pruebas de Función Cardíaca , Humanos , Inflamación/patología , Longevidad , Ratones , Ratones Mutantes , Miocardio/ultraestructura , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Especificidad de Órganos
10.
Aging Cell ; 11(1): 139-49, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22051242

RESUMEN

Oxidative stress contributes to the pathogenesis of aging-associated heart failure. Among various signaling pathways mediating oxidative stress, the NAD(+) -dependent protein deacetylase SirT1 has been implicated in the protection of heart muscle. Expression of a locally acting insulin-like growth factor-1 (IGF-1) propeptide (mIGF-1) helps the heart to recover from infarct and enhances SirT1 expression in cardiomyocytes (CM) in vitro, exerting protection from hypertrophic and oxidative stresses. To study the role of mIGF-1/SirT1 signaling in vivo, we generated cardiac-specific mIGF-1 transgenic mice in which SirT1 was depleted from adult CM in a tamoxifen-inducible and conditional fashion. Analysis of these mice confirmed that mIGF-1-induced SirT1 activity is necessary to protect the heart from paraquat (PQ)-induced oxidative stress and lethality. In cultured CM, mIGF-1 increases SirT1 expression through a c-Jun NH(2)-terminal protein kinase 1 (JNK1)-dependent signaling mechanism. Thus, mIGF-1 protects the heart from oxidative stress via SirT1/JNK1 activity, suggesting new avenues for cardiac therapy during aging and heart failure.


Asunto(s)
Envejecimiento/metabolismo , Insuficiencia Cardíaca/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Miocardio/metabolismo , Transducción de Señal , Sirtuina 1/genética , Envejecimiento/genética , Envejecimiento/patología , Animales , Animales Recién Nacidos , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/patología , Factor I del Crecimiento Similar a la Insulina/genética , Ratones , Ratones Transgénicos , Proteína Quinasa 8 Activada por Mitógenos/genética , Proteína Quinasa 8 Activada por Mitógenos/metabolismo , Miocardio/patología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Estrés Oxidativo , Paraquat/farmacología , Cultivo Primario de Células , ARN Interferente Pequeño/genética , Ratas , Sirtuina 1/deficiencia , Transfección
11.
Biochem Biophys Res Commun ; 416(3-4): 293-9, 2011 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-22100652

RESUMEN

The mechanism implicated in differentiation of endogenous cardiac stem cells into cardiomyocytes to regenerate the heart tissue upon an insult remains elusive, limiting the therapeutical goals to exogenous cell injection and/or gene therapy. We have shown previously that cardiac specific overexpression of the insulin-like growth factor 1 propeptide IGF-1Ea induces beneficial myocardial repair after infarct. Although the mechanism is still under investigation, the possibility that this propeptide may be involved in promoting stem cell differentiation into the cardiac lineage has yet to be explored. To investigate whether IGF-1Ea promote cardiogenesis, we initially modified P19 embryonal carcinoma cells to express IGF-1Ea. Taking advantage of their cardiomyogenic nature, we analyzed whether overexpression of this propeptide affected cardiac differentiation program. The data herein presented showed for the first time that constitutively overexpressed IGF-1Ea increased cardiogenic differentiation program in both undifferentiated and DMSO-differentiated cells. In details, IGF-1Ea overexpression promoted localization of alpha-actinin in finely organized sarcomeric structure compared to control cells and upregulated the cardiac mesodermal marker NKX-2.5 and the ventricular structural protein MLC2v. Furthermore, activated IGF-1 signaling promoted cardiac mesodermal induction in undifferentiated cells independently of cell proliferation. This analysis suggests that IGF-1Ea may be a good candidate to improve both in vitro production of cardiomyocytes from pluripotent stem cells and in vivo activation of the differentiation program of cardiac progenitor cells.


Asunto(s)
Diferenciación Celular , Corazón/embriología , Factor I del Crecimiento Similar a la Insulina/biosíntesis , Miocitos Cardíacos/citología , Organogénesis , Células Madre Pluripotentes/metabolismo , Animales , Ciclo Celular , Línea Celular Tumoral , Supervivencia Celular , Factor I del Crecimiento Similar a la Insulina/genética , Mesodermo/embriología , Ratones , Péptidos/genética , Proteínas Serina-Treonina Quinasas , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora
12.
Biochem Biophys Res Commun ; 410(2): 201-7, 2011 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-21621517

RESUMEN

The aim of this study was to investigate whether supplemental IGF-1Ea transgene expression induces activation of local cardiac and bone marrow stem cell population to mediate mammalian heart repair. In physiologic conditions, cardiac overexpression of the IGF-1Ea propeptide is associated with an enrichment of c-Kit/Sca-1 positive side population cells in the bone marrow and the occurrence of an endothelial-primed CD34 positive side population in the heart. This cellular profile is shown here to correlate with the expression of cytokines involved in stem cell mobilization and vessel formation. This molecular and cellular interplay favored IGF-1Ea-mediated vessel formation in injured hearts. The physiologic and pathologic connection between cytokines and stem cells in response to IGF-1Ea may represent an important model to understand how to elicit endogenous reparative signaling.


Asunto(s)
Células de la Médula Ósea/fisiología , Citocinas/metabolismo , Corazón/fisiología , Factor I del Crecimiento Similar a la Insulina/fisiología , Infarto del Miocardio/fisiopatología , Neovascularización Fisiológica , Regeneración , Animales , Antígenos Ly/metabolismo , Células de la Médula Ósea/metabolismo , Vasos Coronarios/fisiología , Factor I del Crecimiento Similar a la Insulina/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Transgénicos , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Proteínas Proto-Oncogénicas c-kit/metabolismo , Células Madre/metabolismo , Células Madre/fisiología
13.
Biotechnol Prog ; 27(2): 571-6, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21425250

RESUMEN

We have previously demonstrated how to transform the conventional method of hybridoma production and screening into a fast, high-throughput technology. Nevertheless, there were still open questions related to automated procedures and immunization protocols that we address now by comparing the hybridoma production work-flow in automated and manually executed processes. In addition, since the animals' antibody responses to single or multiple antigen challenge affect monoclonal antibody throughput, different immunization and fusion strategies were tested. Specifically, the results obtained with multiplexing (multiple target antigens injected into a single animal) and single antigen immunization followed by splenocyte pooling immediately before fusion were compared with conventional methods. The results presented here demonstrate that the optimal protocol consists of automated somatic-cell fusion and hybridoma dilution followed by manual plating of hybridoma cells. Additionally, more specific and productive hybridoma clones were obtained with multiplexed immunization in a single animal with respect to the splenocyte pooling from single antigen immunized animals. However, in terms of overall antibody yield, the conventional method consisting of single immunization for each single animal assured ten times more specific hybridoma cell lines than the strategy based on the multiple antigen immunization followed by separate fusion step. In conclusion, the most productive approach for recovering a large number of suitable antibodies relies on single antigen immunization followed by automated fusion and dilution steps and manual plating.


Asunto(s)
Anticuerpos Monoclonales/biosíntesis , Ensayos Analíticos de Alto Rendimiento/métodos , Inmunización/métodos , Robótica/métodos , Formación de Anticuerpos , Antígenos/inmunología , Fusión Celular , Hibridomas/inmunología , Bazo/citología , Bazo/inmunología
14.
Aging (Albany NY) ; 2(1): 43-62, 2009 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-20228935

RESUMEN

Oxidative and hypertrophic stresses contribute to the pathogenesis of heart failure. Insulin-like growth factor-1 (IGF-1) is a peptide hormone with a complex post-transcriptional regulation, generating distinct isoforms. Locally acting IGF-1 isoform (mIGF-1) helps the heart to recover from toxic injury and from infarct. In the murine heart, moderate overexpression of the NAD(+)-dependent deacetylase SirT1 was reported to mitigate oxidative stress. SirT1 is known to promote lifespan extension and to protect from metabolic challenges. Circulating IGF-1 and SirT1 play antagonizing biological roles and share molecular targets in the heart, in turn affecting cardiomyocyte physiology. However, how different IGF-1 isoforms may impact SirT1 and affect cardiomyocyte function is unknown. Here we show that locally acting mIGF-1 increases SirT1 expression/activity, whereas circulating IGF-1 isoform does not affect it, in cultured HL-1 and neonatal cardiomyocytes. mIGF-1-induced SirT1 activity exerts protection against angiotensin II (Ang II)-triggered hypertrophy and against paraquat (PQ) and Ang II-induced oxidative stress. Conversely, circulating IGF-1 triggered itself oxidative stress and cardiomyocyte hypertrophy. Interestingly, potent cardio-protective genes (adiponectin, UCP-1 and MT-2) were increased specifically in mIGF-1-overexpressing cardiomyocytes, in a SirT1-dependent fashion. Thus, mIGF-1 protects cardiomyocytes from oxidative and hypertrophic stresses via SirT1 activity, and may represent a promising cardiac therapeutic.


Asunto(s)
Regulación de la Expresión Génica , Factor I del Crecimiento Similar a la Insulina/metabolismo , Miocitos Cardíacos/metabolismo , Estrés Oxidativo/fisiología , Sirtuina 1/metabolismo , Angiotensina II/metabolismo , Animales , Western Blotting , Expresión Génica , Hipertrofia/genética , Hipertrofia/metabolismo , Hipertrofia/patología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Miocitos Cardíacos/patología , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/fisiología , Sirtuina 1/genética , Transfección
15.
J Cell Biol ; 179(6): 1205-18, 2007 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-18086917

RESUMEN

The calcium-activated phosphatase calcineurin (Cn) transduces physiological signals through intracellular pathways to influence the expression of specific genes. Here, we characterize a naturally occurring splicing variant of the CnAbeta catalytic subunit (CnAbeta1) in which the autoinhibitory domain that controls enzyme activation is replaced with a unique C-terminal region. The CnAbeta1 enzyme is constitutively active and dephosphorylates its NFAT target in a cyclosporine-resistant manner. CnAbeta1 is highly expressed in proliferating myoblasts and regenerating skeletal muscle fibers. In myoblasts, CnAbeta1 knockdown activates FoxO-regulated genes, reduces proliferation, and induces myoblast differentiation. Conversely, CnAbeta1 overexpression inhibits FoxO and prevents myotube atrophy. Supplemental CnAbeta1 transgene expression in skeletal muscle leads to enhanced regeneration, reduced scar formation, and accelerated resolution of inflammation. This unique mode of action distinguishes the CnAbeta1 isoform as a candidate for interventional strategies in muscle wasting treatment.


Asunto(s)
Calcineurina/fisiología , Factores de Transcripción Forkhead/metabolismo , Músculo Esquelético/fisiología , Subunidades de Proteína/fisiología , Regeneración , Secuencia de Aminoácidos , Animales , Calcineurina/química , Calcineurina/genética , Diferenciación Celular , Línea Celular , Proliferación Celular , Factores de Transcripción Forkhead/genética , Humanos , Ratones , Ratones Transgénicos , Datos de Secuencia Molecular , Músculo Esquelético/citología , Músculo Esquelético/metabolismo , Mioblastos Esqueléticos/citología , Mioblastos Esqueléticos/metabolismo , Mioblastos Esqueléticos/fisiología , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/fisiología , Subunidades de Proteína/química , Subunidades de Proteína/genética , Ratas
16.
Circ Res ; 100(12): 1732-40, 2007 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-17525368

RESUMEN

The injured mammalian heart is particularly susceptible to tissue deterioration, scarring, and loss of contractile function in response to trauma or sustained disease. We tested the ability of a locally acting insulin-like growth factor-1 isoform (mIGF-1) to recover heart functionality, expressing the transgene in the mouse myocardium to exclude endocrine effects on other tissues. supplemental mIGF-1 expression did not perturb normal cardiac growth and physiology. Restoration of cardiac function in post-infarct mIGF-1 transgenic mice was facilitated by modulation of the inflammatory response and increased antiapoptotic signaling. mIGF-1 ventricular tissue exhibited increased proliferative activity several weeks after injury. The canonical signaling pathway involving Akt, mTOR, and p70S6 kinase was not induced in mIGF-1 hearts, which instead activated alternate PDK1 and SGK1 signaling intermediates. The robust response achieved with the mIGF-1 isoform provides a mechanistic basis for clinically feasible therapeutic strategies for improving the outcome of heart disease.


Asunto(s)
Factor I del Crecimiento Similar a la Insulina/fisiología , Infarto del Miocardio/complicaciones , Miocitos Cardíacos/fisiología , Cicatrización de Heridas/fisiología , Animales , Proliferación Celular , Células Cultivadas , Cicatriz/fisiopatología , Cicatriz/prevención & control , ADN Complementario/genética , Regulación de la Expresión Génica , Inflamación , Factor I del Crecimiento Similar a la Insulina/genética , Ratones , Ratones Transgénicos , Contracción Miocárdica/fisiología , Infarto del Miocardio/fisiopatología , Miocitos Cardíacos/citología , Isoformas de Proteínas/genética , Isoformas de Proteínas/fisiología , Recuperación de la Función , Transducción de Señal/fisiología , Cicatrización de Heridas/genética
17.
Novartis Found Symp ; 274: 228-38; discussion 239-43, 272-6, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-17019815

RESUMEN

Regeneration is a homeostatic mechanism evolved to maintain or restore the original architecture of a damaged tissue by recapitulating part of its original embryonic development. Our focus has been to intervene in signalling mechanisms at work in the regeneration process to increase the efficiency of mammalian tissue repair. In response to traumatic injury, both skeletal and cardiac muscle activate signalling cascades involved in inflammation, cell death and fibrosis, often at the expense of cell survival and regeneration. In contrast, mice expressing a local isoform of insulin-like growth factor 1 (mIGF1) as a muscle-specific transgene maintain skeletal muscle integrity and ageing, counter muscle decline in degenerative muscle disease, and show enhanced stem cell homing to damaged muscle. Under the control of a cardiac-specific promoter, the mIGF1 transgene directs efficient repair of infarcted heart tissue without scar formation. In both models, novel signalling pathways are employed, suggesting specific mechanisms through which mIGF1 improves regeneration and providing potential targets for clinical intervention.


Asunto(s)
Miocardio/patología , Regeneración , Transducción de Señal , Animales , Citocinas/metabolismo , Corazón/anatomía & histología , Humanos , Factor I del Crecimiento Similar a la Insulina/metabolismo , Ratones , Modelos Biológicos , Modelos Genéticos , Músculo Esquelético/metabolismo , Isoformas de Proteínas , Transgenes
18.
Cell Transplant ; 15 Suppl 1: S41-5, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16826794

RESUMEN

The potential for endogenous or supplementary stem cells to restore the form and function of damaged tissues is particularly promising for overcoming the restricted regenerative capacity of the mammalian heart. To maintain blood circulation, this essential organ needs to launch a rapid response to repair damage of the muscle wall and to prevent muscle loss. The capacity of growth factors to supplement the repair process has been successfully applied to restore the integrity of damaged skeletal muscle, reducing the fibrotic response to injury, and recruiting local populations of self-renewing precursor cells and circulating stem cells. We review the recent evidence that extension of growth factor supplementation to the heart may overcome its inherent regenerative impediments through improvement of the local tissue environment and stimulation of cell replacement, and we speculate on future research directions for treatment of myocardial damage.


Asunto(s)
Sustancias de Crecimiento/farmacología , Corazón/efectos de los fármacos , Corazón/crecimiento & desarrollo , Regeneración/efectos de los fármacos , Animales , Corazón/fisiología , Músculo Esquelético/metabolismo , Miocardio/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...