Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
MethodsX ; 12: 102777, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38883588

RESUMEN

The contamination of microplastics in humans is of increasing concern. Therefore, the aim of this study was to develop effective methods to determine the concentration and types of microplastics entering human digestive system. To study levels of MPs contamination in humans, an excellent indicator are stools. Indeed, stools, and thus the digestive system, can be an excellent indicator of the level of MPs contamination in humans. Hence, objective was to find effective methods to extract, quantify and characterize microplastics in stool and small intestine samples. The samples studied were human stools and pig jejunum (which has human-like characteristics). The methods were optimized by observing extraction efficiency, compatibility by Fourier-transform infrared spectroscopy (FTIR) characterization and non-deformation of the microplastics. The steps of the procedure were: • Sampling to avoid plastic contamination • Non-aggressive chemical and enzymatic digestion • Counting and characterization The methods were optimized and validated, observing recovery and repeatability. Therefore, two simple, effective methods with high analytical performance have been developed. The MPs present in the stool and intestine samples were counted by stereoscopic microscope and characterized by FTIR, finding several types of MPs such as synthetic cellulose, polyethylene, polypropylene, polystyrene, and polyethylene terephthalate, among others.

2.
Mar Pollut Bull ; 205: 116628, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38917492

RESUMEN

The aim of this work was to provide evidence on the presence of microplastics (MPs) in regurgitated Yellow-legged Gull pellets (n = 18) from Sfax salina (south-eastern Tunisia). This artificial area is subject to high anthropogenic pressure and hosts Yellow-legged Gulls, which are at the top of the trophic chain and can be used as sentinel species to monitor litter in the environment, including plastic pollution. The total number of MPs found in the samples was 309, 63.8 % fibres (4.95 ± 3.51 MPs/g) and 36.2 % fragments (2.87 ± 1.74 MPs/g). Micro-FTIR analysis evidenced that a large proportion of the fibres was attributed to artificial cellulose (40.7 %). Ethylene vinyl acetate (EVA) and polyethylene (PE) were found in the fragments.

3.
Food Chem ; 443: 138582, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38301567

RESUMEN

Polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), novel brominated flame retardants (NBFRs), phthalate esters (PAEs) are pervasive environmental pollutants, posing threats to both ecosystems and human health. Although several analytical methods were developed for these compounds, they are not performed simultaneously. This study addresses the need for a sustainable, novel, analytical approach capable of simultaneously determining these diverse chemical classes in edible fish muscles. Employing ultrasound extraction coupled with dispersive solid-phase extraction (d-SPE) as a cleanup procedure, the method was compared to conventional techniques, revealing significant improvements. Analytical parameters were thoroughly assessed, and the innovative method demonstrated notable advantages, reducing extraction and purification times by approximately 74-80 % and solvent consumption by around 94-97 %. Applied to Mediterranean Sea fish samples, the results underscore the method's potential as a viable, sustainable alternative to traditional approaches, promising enhanced efficiency and reduced environmental impact.


Asunto(s)
Contaminantes Ambientales , Retardadores de Llama , Bifenilos Policlorados , Humanos , Animales , Cromatografía de Gases y Espectrometría de Masas/métodos , Ecosistema , Bifenilos Policlorados/análisis , Contaminantes Ambientales/análisis , Extracción en Fase Sólida/métodos , Éteres Difenilos Halogenados/análisis , Retardadores de Llama/análisis , Monitoreo del Ambiente
4.
Sci Total Environ ; 876: 162811, 2023 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-36924974

RESUMEN

Talitrid amphipods are an important component of detritus web, playing a key role in the fragmentation of organic matters of marine and terrestrial origin, and it is well known that sandhoppers ingest microplastics. To assess the effective consumption of bioplastics and their effects on survival rate and on pollutants transfer (i.e. phthalates) on supralittoral arthropods, laboratory experiments were conducted by feeding adult T. saltator with two different types of bioplastic commonly used in the production of shopping bags. Groups of about 20 individuals were fed with 10 × 10 cm sample sheets of the two types of bioplastic for four weeks. The results show that amphipods ingest bioplastics even in the absence of microbial film and that ingestion of bioplastic can have effects on talitrid amphipods. Microtomographic analyses of faecal pellets seem consistent with this finding. The high phthalate concentrations in freshly collected individuals suggest the presence in the environment of these compounds, and the ability of amphipods to assimilate them, while the decrease in phthalate concentrations in bioplastic-fed individuals could be attributed to the scavenging effect of virgin plastic, as already observed in a previous study. In summary, the results indicate that different bioplastics may have effects on T. saltator (i.e. survival rate and faecal pellets structure) and confirm a potential role of amphipods in the degradation of bioplastics in supralittoral zone of marine sandy beaches, even when bioplastics are not colonized by bacterial biofilm that seems to improve palatability.


Asunto(s)
Anfípodos , Ácidos Ftálicos , Humanos , Animales , Arena , Anfípodos/metabolismo , Plásticos/metabolismo , Ácidos Ftálicos/metabolismo
5.
Toxics ; 10(7)2022 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-35878296

RESUMEN

Among microplastics (MPs), fibers are one of the most abundant shapes encountered in the aquatic environment. Growing attention is being focused on this typology of particles since they are considered an important form of marine contamination. Information about microfibers distribution in the Mediterranean Sea is still limited and the increasing evidence of the high amount of fibers in the aquatic environment should lead to a different classification from MPs which, by definition, are composed only of synthetic materials and not natural. In the past, cellulosic fibers (natural and regenerated) have been likely included in the synthetic realm by hundreds of studies, inflating "micro-plastic" counts in both environmental matrices and organisms. Comparisons are often hampered because many of the available studies have explicitly excluded the micro-fibers (MFs) content due, for example, to methodological problems. Considering the abundance of micro-fibers in the environment, a chemical composition analysis is fundamental for toxicological assessments. Overall, the results of this review work provide the basis to monitor and mitigate the impacts of microfiber pollution on the sea ecosystems in the Mediterranean Sea, which can be used to investigate other basins of the world for future risk assessment.

6.
Chemosphere ; 292: 133448, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34973258

RESUMEN

The presence of various heavy metal ions in the industrial waste waters has recently been a challenging issue for human health. Since heavy metals are highly soluble in the aquatic environments and they can be absorbed easily by living organisms, their removal is essential from the environmental point of view. Many studies have been devoted to investigating the environmental behaviour of graphene-based nanomaterials as sorbent agents to remove metals from wastewaters arising by galvanic industries. Among the graphene derivates, especially graphene oxide (GO), due to its abundant oxygen functional groups, high specific area and hydrophilicity, is a high-efficient adsorbent for the removal of heavy and precious metals in aquatic environment. This paper reviews the main graphene, GO, functionalized GO and their composites and its applications in the metals removal process. The influencing factors, adsorption capacities and reuse capability are highlighted for the most extensively used heavy metals, including copper, zinc, nickel, chromium, cobalt and precious metals (i.e., gold, silver, platinum, palladium, rhodium, and ruthenium) in the electroplating process.


Asunto(s)
Grafito , Metales Pesados , Nanoestructuras , Contaminantes Químicos del Agua , Adsorción , Galvanoplastia , Humanos , Aguas Residuales , Contaminantes Químicos del Agua/análisis
7.
Indoor Air ; 30(5): 900-913, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32090381

RESUMEN

Indoor Air Quality monitoring in cultural institutions is of particular concern to protect these places and the cultural heritage content. An indoor monitoring campaign was performed in three museums in Florence (Italy) to determine the occurrence and levels of volatile organic compounds (VOCs). VOCs of interest included BTEX (benzene, toluene, ethylbenzene, xylenes), terpenes, aldehydes, organic acids, and cyclic volatile methyl siloxanes (cVMS). The most abundant VOCs in all samples analyzed were BTEX, which were strictly related to the traffic source, followed by siloxanes and terpenes. Among BTEX, toluene was always the most abundant followed by xylenes, ethylbenzene, and benzene. cVMS in exhibition rooms with the presence of visitors showed higher values compared to samples collected when the museums were closed. Terpenes showed not only the influence of vegetation-biogenic sources surrounding a museum but could also be related to the wood used for the construction of showcases and furniture and the use of cleaning products. Data obtained also showed the presence of organic acids and aldehydes whose source can be traced back to exhibits themselves and wood-based furniture. Assessing the levels of organic acids in museums is important because, over time, it can cause deterioration of the artifacts.


Asunto(s)
Contaminación del Aire Interior/estadística & datos numéricos , Monitoreo del Ambiente , Museos/estadística & datos numéricos , Compuestos Orgánicos Volátiles/análisis , Contaminantes Atmosféricos/análisis , Aldehídos/análisis , Benceno/análisis , Italia , Terpenos , Tolueno/análisis , Xilenos/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...