Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-34063934

RESUMEN

The aim of this study was to characterize the turning phase during a modified 505 test. Forty collegiate basketball students, divided into faster and slower performers and high-playing-level and low-playing-level groups, were evaluated for the force-time characteristics (braking and/or propulsive phase) of the penultimate foot contact (PFC), final foot contact (FFC), and first accelerating foot contact (AFC), and for completion time and approach velocity. Based on the composition of the AFC, trials were classified as braking/propulsive or only propulsive. Regression analysis for the prediction of completion time was performed. The AFC contributed to reacceleration through shorter contact times and step length, and lower braking force production (p < 0.05). Faster performers and the high-playing-level group demonstrated (p < 0.05): lower completion times, higher approach velocities, longer steps length in the PFC and FFC, greater braking forces and impulses in the PFC; greater braking and propulsive forces, braking impulses, lower contact times in the FFC; greater braking and propulsive horizontal forces, horizontal impulses, lower contact times and vertical impulses in the AFC. Kinetic variables from only the FFC and AFC and approach velocity predicted 75% (braking/propulsive trials) and 76.2% (only-propulsive trials) of completion times. The characterization of the turning phase demonstrated the specific contribution of each foot contact and the possible implications for training prescription.


Asunto(s)
Pie , Fenómenos Biomecánicos , Humanos , Cinética
2.
J Funct Morphol Kinesiol ; 5(3)2020 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-33467270

RESUMEN

The validity and reliability of the Optojump system were investigated for jumping height and flight time in vertical jump tests. Conversely, the purpose of the present study was to investigate the validity and reliability of the Optojump system for measuring contact time and lateral displacement in change of direction and lateral jump tests. Thirty basketball collegiate athletes were tested on two 10 m sprints with a 60° (COD60) or 180° (COD180) change of direction, lateral controlled (CLRJ) and maximal (MLRJ) rebound jump, and lateral countermovement (LCMJ) and squat (LSJ) jump with the concomitant use of two force plates and the Optojump system for the measurement of contact time in COD60, COD180, CLRJ, MLRJ, and lateral jumping distance in all the lateral jump tests. Almost perfect coefficients (r ≥ 0.95) emerged for contact time in COD60, COD180, CLRJ, MLRJ, although a systematic bias was found for COD60 (-0.01 s). Good-to-excellent reliability was found for almost all the measurements of contact time and lateral jumping distance for change of direction and lateral jump tests. Therefore, the use of Optojump system for testing change of direction and lateral jumping abilities should be executed with caution, avoiding misinterpretation of data.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...