Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Intervalo de año de publicación
1.
Biosensors (Basel) ; 13(8)2023 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-37622915

RESUMEN

Nifedipine, a widely utilized medication, plays a crucial role in managing blood pressure in humans. Due to its global prevalence and extensive usage, close monitoring is necessary to address this widespread concern effectively. Therefore, the development of an electrochemical sensor based on a glassy carbon electrode modified with carbon nanofibers and gold nanoparticles in a Nafion® film was performed, resulting in an active electrode surface for oxidation of the nifedipine molecule. This was applied, together with a voltammetric methodology, for the analysis of nifedipine in biological and environmental samples, presenting a linear concentration range from 0.020 to 2.5 × 10-6 µmol L-1 with a limit of detection 2.8 nmol L-1. In addition, it presented a good recovery analysis in the complexity of the samples, a low deviation in the presence of interfering potentials, and good repeatability between measurements.


Asunto(s)
Nanopartículas del Metal , Nanofibras , Humanos , Oro , Nifedipino , Carbono , Electrodos
2.
Biosensors (Basel) ; 13(7)2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37504089

RESUMEN

The present study reports the development and application of a flow injection analysis (FIA) system for the simultaneous determination of uric acid (UA) and caffeine (CAF) using cathodically pretreated boron-doped diamond electrode (CPT-BDD) and multiple-pulse amperometry (MPA). The electrochemical profiles of UA and CAF were analyzed via cyclic voltammetry in the potential range of 0.20-1.7 V using 0.10 mol L-1 H2SO4 solution as supporting electrolyte. Under optimized conditions, two oxidation peaks at potentials of 0.80 V (UA) and 1.4 V (CAF) were observed; the application of these potentials using multiple-pulse amperometry yielded concentration linear ranges of 5.0 × 10-8-2.2 × 10-5 mol L-1 (UA) and 5.0 × 10-8-1.9 × 10-5 mol L-1 (CAF) and limits of detection of 1.1 × 10-8 and 1.3 × 10-8 mol L-1 for UA and CAF, respectively. The proposed method exhibited good repeatability and stability, and no interference was detected in the electrochemical signals of UA and CAF in the presence of glucose, NaCl, KH2PO4, CaCl2, urea, Pb, Ni, and Cd. The application of the FIA-MPA method for the analysis of environmental samples resulted in recovery rates ranging between 98 and 104%. The results obtained showed that the BDD sensor exhibited a good analytical performance when applied for CAF and UA determination, especially when compared to other sensors reported in the literature.


Asunto(s)
Cafeína , Ácido Úrico , Cafeína/análisis , Oxidación-Reducción , Electrodos , Técnicas Electroquímicas/métodos
4.
Biosensors (Basel) ; 12(10)2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36290997

RESUMEN

This work reports the development and application of a simple, rapid and low-cost voltammetric method for the determination of 3-methylmorphine at nanomolar levels in clinical and environmental samples. The proposed method involves the combined application of a glassy carbon electrode modified with reduced graphene oxide, chitosan and bismuth film (Bi-rGO-CTS/GCE) via square-wave voltammetry using 0.04 mol L-1 Britton-Robinson buffer solution (pH 4.0). The application of the technique yielded low limit of detection of 24 × 10-9 mol L-1 and linear concentration range of 2.5 × 10-7 to 8.2 × 10-6 mol L-1. The Bi-rGO-CTS/GCE sensor was successfully applied for the detection of 3-methylmorphine in the presence of other compounds, including paracetamol and caffeine. The results obtained also showed that the application of the sensor for 3-methylmorphine detection did not experience any significant interference in the presence of silicon dioxide, povidone, cellulose, magnesium stearate, urea, ascorbic acid, humic acid and croscarmellose. The applicability of the Bi-rGO-CTS/GCE sensor for the detection of 3-methylmorphine was evaluated using synthetic urine, serum, and river water samples through addition and recovery tests, and the results obtained were found to be similar to those obtained for the high-performance liquid chromatography method (HPLC)-used as a reference method. The findings of this study show that the proposed voltammetric method is a simple, fast and highly efficient alternative technique for the detection of 3-methylmorphine in both biological and environmental samples.


Asunto(s)
Quitosano , Grafito , Carbono/química , Bismuto , Acetaminofén , Sustancias Húmicas , Povidona , Cafeína , Límite de Detección , Grafito/química , Electrodos , Dióxido de Silicio , Celulosa , Ácido Ascórbico , Urea , Agua , Técnicas Electroquímicas/métodos
5.
Anal Methods ; 14(39): 3859-3866, 2022 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-36129055

RESUMEN

A new electrode was prepared based on functionalized graphene and gold nanoparticles dispersed in a chitosan film. Such an electrochemical sensor determines ofloxacin in the presence of dopamine, paracetamol, and caffeine. Characterization (morphological and electrochemical) was done using scanning electron microscopy, electrochemical impedance spectroscopy, and cyclic voltammetry. The sensor design improved the analytical signal, the electrochemical activity, and the electron transfer rate. Ofloxacin was determined by square-wave voltammetry, with a linear concentration range of 0.10-4.9 µmol L-1 (r = 0.999, LOD = 12 nmol L-1). The proposed sensor showed good repeatability and selectivity and was applied successfully to the determination of ofloxacin in pharmaceutical formulations, synthetic urine, and water river samples. The proposed method proved to be excellent; therefore, it is an alternative method for the determination of ofloxacin.


Asunto(s)
Quitosano , Grafito , Nanopartículas del Metal , Acetaminofén , Cafeína/química , Carbono/química , Dopamina , Electrodos , Oro/química , Grafito/química , Nanopartículas del Metal/química , Ofloxacino , Preparaciones Farmacéuticas , Agua
6.
Food Chem ; 383: 132384, 2022 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-35176714

RESUMEN

This paper reports the development of a voltammetric sensor using glassy carbon electrode based on hierarchical porous carbon (HPC) with silver sulfide nanoparticles (Ag2SNP), Nafion and fullerene (C60) for the determination of nitrite in foods. Raman spectroscopy, scanning electron microscopy, transmission electron microscopy and energy-dispersive X-ray were used to characterize the morphology and composition of the materials. The use of HPC and C60 in the construction of the electrode contributed toward the enlargement of the specific surface area and the improvement of the electrochemical performance of the device. The electrochemical behavior of nitrite in different electrodes was evaluated by cyclic voltammetry in the potential range of 0.4 - 1 V. Using the optimal conditions, a linear response ranges of 4.0- 148 µmol L-1, a limit of detection of 0.09 µmol L-1 and a sensitivity of 0.05 µAµmol L-1 cm-2 were obtained. The results showed that the proposed method can selectively detect nitrite in the presence of other compounds without interference and with good stability. The proposed method was successfully applied for the detection of nitrite in food samples where it demonstrated a good degree of accuracy and satisfactory efficiency.


Asunto(s)
Fulerenos , Nanopartículas , Carbono/química , Técnicas Electroquímicas , Electrodos , Límite de Detección , Nanopartículas/química , Nitritos , Porosidad , Compuestos de Plata
7.
Cells ; 10(12)2021 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-34944033

RESUMEN

Human BMP-2, a homodimeric protein that belongs to the TGF- ß family, is a recognized osteoinductor due to its capacity of inducing bone regeneration and ectopic bone formation. The administration of its recombinant form is an alternative to autologous bone grafting. A variety of E. coli-derived hBMP-2 has been synthesized through refolding of cytoplasmic inclusion bodies. The present work reports the synthesis, purification, and characterization of periplasmic hBMP-2, obtained directly in its correctly folded and authentic form, i.e., without the initial methionine typical of the cytoplasmic product that can induce undesired immunoreactivity. A bacterial expression vector was constructed including the DsbA signal peptide and the cDNA of hBMP-2. The periplasmic fluid was extracted by osmotic shock and analyzed via SDS-PAGE, Western blotting, and reversed-phase high-performance liquid chromatography (RP-HPLC). The purification was carried out by heparin affinity chromatography, followed by high-performance size-exclusion chromatography (HPSEC). HPSEC was used for qualitative and quantitative analysis of the final product, which showed >95% purity. The classical in vitro bioassay based on the induction of alkaline phosphatase activity in myoblastic murine C2C12 cells and the in vivo bioassay consisting of treating calvarial critical-size defects in rats confirmed its bioactivity, which matched the analogous literature data for hBMP-2.


Asunto(s)
Proteína Morfogenética Ósea 2/biosíntesis , Escherichia coli/metabolismo , Periplasma/metabolismo , Animales , Bioensayo , Reactores Biológicos , Línea Celular , Cromatografía en Gel , Cromatografía Líquida de Alta Presión , Cromatografía de Fase Inversa , Fermentación , Humanos , Masculino , Ratones , Osteogénesis , Ratas Wistar , Cráneo/patología
8.
Talanta ; 224: 121804, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33379030

RESUMEN

The present work reports the development of a sensitive and selective method for ethinylestradiol detection using screen-printed electrode (SPE) modified with functionalized graphene (FG), graphene quantum dots (GQDs) and magnetic nanoparticles coated with molecularly imprinted polymers (mag@MIP). The performance of the mag@MIP sensor was compared with that of a non-molecularly imprinted sensor (mag@NIP). Chemical and physical characterizations of the mag@NIP and mag@MIP sensors were performed using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and Brunauer-Emmett-Teller (BET) techniques. The electrochemical behavior of the electrodes investigated, which included (mag@MIP)-GQDs-FG-NF/SPE, (mag@NIP)-GQDs-FG-NF/SPE, GQDs-FG-NF/SPE and FG-NF/SPE, was evaluated by cyclic voltammetry. The results obtained show a significant increase in peak current magnitude for (mag@MIP)-GQDs-FG-NF/SPE. Using square wave voltammetry experiments, the efficiency of the (mag@MIP)-GQDs-FG-NF/SPE sensor was also tested under optimized conditions. The linear response range obtained for ethinylestradiol concentration was 10 nmol L-1 to 2.5 µmol L-1, with limit of detection of 2.6 nmol L-1. The analytical signal of the (mag@MIP)-GQDs-FG-NF/SPE sensor suffered no interference from different compounds and the sensor exhibited good repeatability. The proposed sensor was successfully applied for ethynilestradiol detection in river water, serum and urine samples, where recovery rates between 96 to 105% and 97-104% were obtained for environmental and biological samples, respectively.


Asunto(s)
Grafito , Nanopartículas de Magnetita , Impresión Molecular , Puntos Cuánticos , Técnicas Electroquímicas , Electrodos , Etinilestradiol , Límite de Detección , Polímeros Impresos Molecularmente
9.
Cells, v. 10, n. 12, 3525, dez. 2021
Artículo en Portugués | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4086

RESUMEN

Human BMP-2, a homodimeric protein that belongs to the TGF- β family, is a recognized osteoinductor due to its capacity of inducing bone regeneration and ectopic bone formation. The administration of its recombinant form is an alternative to autologous bone grafting. A variety of E. coli-derived hBMP-2 has been synthesized through refolding of cytoplasmic inclusion bodies. The present work reports the synthesis, purification, and characterization of periplasmic hBMP-2, obtained directly in its correctly folded and authentic form, i.e., without the initial methionine typical of the cytoplasmic product that can induce undesired immunoreactivity. A bacterial expression vector was constructed including the DsbA signal peptide and the cDNA of hBMP-2. The periplasmic fluid was extracted by osmotic shock and analyzed via SDS-PAGE, Western blotting, and reversed-phase high-performance liquid chromatography (RP-HPLC). The purification was carried out by heparin affinity chromatography, followed by high-performance size-exclusion chromatography (HPSEC). HPSEC was used for qualitative and quantitative analysis of the final product, which showed >95% purity. The classical in vitro bioassay based on the induction of alkaline phosphatase activity in myoblastic murine C2C12 cells and the in vivo bioassay consisting of treating calvarial critical-size defects in rats confirmed its bioactivity, which matched the analogous literature data for hBMP-2.

10.
Talanta ; 206: 120252, 2020 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-31514822

RESUMEN

A new electrochemical device based on a combination of nanomaterials such as Printex 6L Carbon and cadmium telluride quantum dots within a poly(3,4-ethylenedioxythiophene) polystyrene sulfonate film was developed for sensitive determination of amoxicillin. The morphological, structural and electrochemical characteristics of the nanostructured material were evaluated using X-ray diffraction, confocal microscopy, transmission electron microscopy and voltammetric techniques. The synergy between these materials increased the electrochemical activity, the electron transfer rate and the electrode surface area, leading to a high magnitude of the anodic peak current for the determination of amoxicillin. The electrochemical determination of the antibiotic was carried out using square-wave voltammetry. Under the optimised experimental conditions, the proposed sensor showed high sensitivity, repeatability and stability to amoxicillin determination, with an analytical curve in the amoxicillin concentration range from 0.90 to 69 µmol L-1, and a low detection limit of 50 nmol L-1. No significant interference in the electrochemical signal of amoxicillin was observed from potential biological interferences and drugs widely used, such as uric acid, paracetamol, urea, ascorbic acid and caffeine. It was demonstrated that without any sample pre-treatment and using a simple measurement device, the sensor could be an alternative method for not only the analysis of pharmaceutical products (commercial tablets) and clinical samples (urine), but also to examine food quality (milk samples).


Asunto(s)
Amoxicilina/análisis , Antibacterianos/análisis , Puntos Cuánticos/química , Amoxicilina/orina , Animales , Antibacterianos/orina , Compuestos Bicíclicos Heterocíclicos con Puentes/química , Compuestos de Cadmio/química , Carbono/química , Técnicas Electroquímicas/instrumentación , Técnicas Electroquímicas/métodos , Electrodos , Contaminación de Alimentos/análisis , Límite de Detección , Leche/química , Polímeros/química , Poliestirenos/química , Telurio/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...