Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 15: 1378591, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38686377

RESUMEN

Introduction: Pulmonary diseases represent a significant burden to patients and the healthcare system and are one of the leading causes of mortality worldwide. Particularly, the COVID-19 pandemic has had a profound global impact, affecting public health, economies, and daily life. While the peak of the crisis has subsided, the global number of reported COVID-19 cases remains significantly high, according to medical agencies around the world. Furthermore, despite the success of vaccines in reducing the number of deaths caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), there remains a gap in the treatment of the disease, especially in addressing uncontrolled inflammation. The massive recruitment of leukocytes to lung tissue and alveoli is a hallmark factor in COVID-19, being essential for effectively responding to the pulmonary insult but also linked to inflammation and lung damage. In this context, mice models are a crucial tool, offering valuable insights into both the pathogenesis of the disease and potential therapeutic approaches. Methods: Here, we investigated the anti-inflammatory effect of the glycosaminoglycan (GAG)-binding chemokine fragment CXCL9(74-103), a molecule that potentially decreases neutrophil transmigration by competing with chemokines for GAG-binding sites, in two models of pneumonia caused by coronavirus infection. Results: In a murine model of betacoronavirus MHV-3 infection, the treatment with CXCL9(74-103) decreased the accumulation of total leukocytes, mainly neutrophils, to the alveolar space and improved several parameters of lung dysfunction 3 days after infection. Additionally, this treatment also reduced the lung damage. In the SARS-CoV-2 model in K18-hACE2-mice, CXCL9(74-103) significantly improved the clinical manifestations of the disease, reducing pulmonary damage and decreasing viral titers in the lungs. Discussion: These findings indicate that CXCL9(74-103) resulted in highly favorable outcomes in controlling pneumonia caused by coronavirus, as it effectively diminishes the clinical consequences of the infections and reduces both local and systemic inflammation.


Asunto(s)
COVID-19 , Quimiocina CXCL9 , Modelos Animales de Enfermedad , Glicosaminoglicanos , Pulmón , SARS-CoV-2 , Animales , Ratones , COVID-19/inmunología , SARS-CoV-2/inmunología , Glicosaminoglicanos/metabolismo , Quimiocina CXCL9/metabolismo , Pulmón/patología , Pulmón/virología , Pulmón/inmunología , Pulmón/metabolismo , Inflamación/inmunología , Humanos , Tratamiento Farmacológico de COVID-19 , Ratones Endogámicos C57BL , Femenino
2.
Viruses ; 15(10)2023 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-37896826

RESUMEN

Exacerbated inflammatory responses are a hallmark of severe coronavirus disease 2019 (COVID-19). Zileuton (Zi) is a selective inhibitor of 5-lipoxygenase, an enzyme involved in the production of several inflammatory/pro-resolving lipid mediators. Herein, we investigated the effect of Zi treatment in a severe acute respiratory syndrome (SARS) model. Mouse hepatitis virus (MHV)3-infected mice treated with Zi significantly improved the clinical score, weight loss, cardiopulmonary function, and survival rates compared with infected untreated animals. The protection observed in Zi-treated mice was associated with a lower inflammatory score, reduced dendritic cell-producing tumor necrosis factor (TNF), and increased neutrophil-producing interleukin (IL)-10 in the lungs three days after infection (dpi). At 5 dpi, the lungs of treated mice showed an increase in Th2-, Treg CD4+-, and Treg CD8+-producing IL-10 and reduced Th1 infiltrating cells. Furthermore, similar results were found upon Zi treatment after SARS-CoV-2 infection in transgenic mice expressing the human angiotensin I-converting enzyme 2 (ACE2) receptor driven by the cytokeratin-18 (K18) gene promoter (K18-hACE2), significantly improving the clinical score, weight loss, and lung inflammatory score compared with untreated animals. Our data suggest that Zi protects against developing severe lung disease during SARS induced by betacoronavirus without affecting the host's capacity to deal with infection.


Asunto(s)
COVID-19 , Inhibidores de la Lipooxigenasa , Humanos , Ratones , Animales , SARS-CoV-2 , COVID-19/patología , Pulmón , Ratones Transgénicos , Inmunidad Innata , Pérdida de Peso , Modelos Animales de Enfermedad
3.
J Ethnopharmacol ; 311: 116436, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37003399

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Mayaro virus (MAYV) is an arbovirus endemic to the Amazon region, which comprises the states of the North and Midwest region of Brazil and encompasses the largest tropical forest in the world, the Amazon Forest. The confirmation of its potential transmission by Aedes aegypti and recent cases in Brazil, mainly in large centers in the northern region, led to the classification of Mayaro fever as an emerging disease. Traditional medicine is commonly used to treat various diseases, mainly by local riverside populations. Some species of the genus Maytenus, which have similar morphologies, are popularly used to treat infections and inflammations. In this context, our research group has studied and confirmed the antiviral activity of several plant-derived compounds. However, several species of this same genus have not been studied and therefore deserve attention. AIM OF THE STUDY: This study aimed to demonstrate the effects of ethyl acetate extracts of leaves (LAE) and branches (TAE) of Maytenus quadrangulata against MAYV. MATERIALS AND METHODS: Mammalian cells (Vero cells) were used to evaluate the cytotoxicity of the extracts. After cell infection by MAYV and the treatment with the extracts, we evaluated the selectivity index (SI), the virucidal effect, viral adsorption and internalization, and the effect on viral gene expression. The antiviral action was confirmed by quantifying the viral genome using RT-qPCR and by analyzing the effect on virus yield in infected cells. The treatment was performed based on the effective concentration protective for 50% of the infected cells (EC50). RESULTS: The leaves (LAE; EC50 12.0 µg/mL) and branches (TAE; EC50 101.0 µg/mL) extracts showed significative selectivity against the virus, with SI values of 79.21 and 9.91, respectively, which were considered safe. Phytochemical analysis revealed that the antiviral action was associated with the presence of catechins, mainly in LAE. This extract was chosen for the subsequent studies since it reduced the viral cytopathic effect and virus production, even at high viral loads [MOI (multiplicity of infection) 1 and 5]. The effects of LAE resulted in a marked reduction in viral gene expression. The viral title was drastically reduced when LAE was added to the virus before infection or during replication stages, reducing virus production up to 5-log units compared to infected and untreated cells. CONCLUSION: Through kinetic replication, MAYV was not detected in Vero cells treated with LAE throughout the viral cycle. The virucidal effect of LAE inactivates the viral particle and can intercept the virus at the end of the cycle when it gains the extracellular environment. Therefore, LAE is a promising source of antiviral agents.


Asunto(s)
Alphavirus , Catequina , Maytenus , Animales , Chlorocebus aethiops , Antivirales/farmacología , Antivirales/química , Catequina/farmacología , Células Vero , Alphavirus/genética , Mamíferos
4.
J Biomol Struct Dyn ; 40(23): 13184-13189, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34633892

RESUMEN

Spike (S) protein has been recognized as a promising molecular target for diagnostic, vaccines and antiviral drugs development for COVID-19. In this study, we analyzed the most predominant mutations in the S protein of Brazilian isolates and predicted the effect of these amino acid alterations to protein conformation. A total of 25,924 sequences were obtained from GISAID for five regions of Brazilian territory (Midwest, North, Northeast, South, and Southeast), according to exclusion criteria. Most of the SARS-CoV-2 isolates belongs to the G clade and showed a large occurrence of D614G, N501Y and L18F substitutions. Prediction effects of these amino acid substitutions on the structure dynamics of the spike protein indicated a positive ΔΔG values and negative ΔΔSVib in most cases which is associated to structural stabilization and flexibility reduction of the S protein. Mutations E484K, N501Y and K417N belong to several SARS-CoV-2 variants of concern such as Alpha, Beta, Gamma and Delta, and showed high incidence among Brazilian isolates. These mutations have been described to increase RBD affinity to ACE-2 host and abolishment of RBD affinity to potent neutralizing ant-RBD. The increase in rates of infection and reinfection requires continuous genomic surveillance studies in order to characterize emerging mutations and monitor vaccine efficacy, and thus consideration structural data and dynamics in the observed phenotypes.Communicated by Ramaswamy H. Sarma.


Asunto(s)
COVID-19 , Glicoproteína de la Espiga del Coronavirus , Humanos , Glicoproteína de la Espiga del Coronavirus/genética , Brasil , SARS-CoV-2/genética , Mutación , Unión Proteica
5.
J Med Virol ; 94(2): 442-453, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34636434

RESUMEN

Zika virus (ZIKV) infections are associated with severe neurological complications and are a global public health concern. There are no approved vaccines or antiviral drugs to inhibit ZIKV replication. NS2B-NS3 protease (NS2B-NS3 pro), which is essential for viral replication, is a promising molecular target for anti-ZIKV drugs. We conducted a systematic review to identify compounds with promising effects against ZIKV; we discussed their pharmacodynamic and pharmacophoric characteristics. The online search, performed using the PubMed/MEDLINE and SCOPUS databases, yielded 56 articles; seven relevant studies that reported nine promising compounds with inhibitory activity against ZIKV NS2B-NS3 pro were selected. Of these, five (niclosamide, nitazoxanide, bromocriptine, temoporfin, and novobiocin) are currently available on the market and have been tested for off-label use against ZIKV. The 50% inhibitory concentration values of these compounds for the inhibition of NS2B-NS3 pro ranged at 0.38-21.6 µM; most compounds exhibited noncompetitive inhibition (66%). All compounds that could inhibit the NS2B-NS3 pro complex showed potent in vitro anti-ZIKV activity with a 50% effective concentration ranging 0.024-50 µM. The 50% cytotoxic concentration of the compounds assayed using A549, Vero, and WRL-69 cell lines ranged at 0.6-1388.02 µM and the selectivity index was 3.07-1698. This review summarizes the most promising antiviral agents against ZIKV that have inhibitory activity against viral proteases.


Asunto(s)
Antivirales/farmacología , Inhibidores de Proteasas/farmacología , Proteínas no Estructurales Virales/antagonistas & inhibidores , Infección por el Virus Zika/tratamiento farmacológico , Virus Zika/efectos de los fármacos , Animales , Antivirales/química , Humanos , Terapia Molecular Dirigida , Inhibidores de Proteasas/química , Proteínas no Estructurales Virales/metabolismo , Replicación Viral/efectos de los fármacos , Virus Zika/enzimología , Infección por el Virus Zika/virología
6.
Nat Prod Res ; 35(16): 2804-2809, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31554433

RESUMEN

Dengue virus (DENV) is the most prevalent mosquito-borne viral pathogen and made the disease a major health concern worldwide. However, specific antiviral drugs against this arbovirose or vaccines are not yet available for treatment or prevention. Thus, here we aimed to study the antiviral activity of hydroethanolic extract, fraction ethyl acetate and subfractions of the leaves of Bauhinia holophylla (Fabaceae:Cercideae), a native plant of the Brazilian Cerrado, against DENV-2 by methylthiazolyldiphenyl-tetrazolium bromide (MTT) method in mammalian cells culture. As results, the hydroethanolic extract showed the most potent effect, with an inhibitory concentration (IC50) of 3.2 µg mL-1 and selectivity index (SI) of 27.6, approximately 16-times higher anti-DENV-2 activity than of the ribavirin (IC50 52.8 µg mL-1). Our results showed in this study appointed that B. holophylla has a promising anti-dengue activity, which was associated mainly with the presence of flavonoids.


Asunto(s)
Antivirales , Bauhinia , Virus del Dengue/efectos de los fármacos , Extractos Vegetales/farmacología , Animales , Antivirales/aislamiento & purificación , Antivirales/farmacología , Bauhinia/química , Células Cultivadas , Dengue/tratamiento farmacológico , Humanos , Hojas de la Planta/química , Serogrupo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...