Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Int J Food Microbiol ; 418: 110726, 2024 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-38704995

RESUMEN

Pet food have been considered as possible vehicles of bacterial pathogens. The sudden boom of the pet food industry due to the worldwide increase in companion animal ownership calls for pet food investigations. Herein, this study aimed to determine the frequency, antimicrobial susceptibility profile, and molecular characteristics of coagulase-negative staphylococci (CoNS) in different pet food brands in Brazil. Eighty-six pet food packages were screened for CoNS. All isolates were identified at species level by MALDI-TOF MS and species-specific PCR. Antimicrobial susceptibility testing was performed by disc diffusion and broth microdilution (vancomycin and teicoplanin only) methods. The D-test was used to screen for inducible clindamycin phenotype (MLS-B). SCCmec typing and detection of mecA, vanA, vanB, and virulence-encoding genes were done by PCR. A total of 16 (18.6 %) CoNS isolates were recovered from pet food samples. Isolates were generally multidrug-resistant (MDR). All isolates were completely resistant (100 %) to penicillin. Resistances (12.5 % - 75 %) were also observed for fluoroquinolones, sulfamethoxazole-trimethoprim, tetracycline, rifampicin, erythromycin, and tobramycin. Isolates were susceptible to vancomycin (MICs <0.25-1 µg/mL) and teicoplanin (MICs <0.25-4 µg/mL). Intriguingly, 3/8 (37.5 %) CoNS isolates with the ERYRCLIS antibiotype expressed MLS-B phenotype. All isolates harboured blaZ gene. Seven (43.8 %) isolates carried mecA; and among them, the SCCmec Type III was the most frequent (n = 5/7; 71.4 %). Isolates also harboured seb, see, seg, sej, sem, etb, tsst, pvl, and hla toxin virulence-encoding genes (6.3 % - 25 %). A total of 12/16 (75 %) isolates were biofilm producers, while the icaAB gene was detected in an S. pasteuri isolate. Herein, it is shown that pet food is a potential source of clinically important Gram-positive bacterial pathogens. To the best of our knowledge, this is the first report of MLS-B phenotype and MR-CoNS in pet food in Latin America.


Asunto(s)
Antibacterianos , Clindamicina , Coagulasa , Pruebas de Sensibilidad Microbiana , Staphylococcus , Staphylococcus/efectos de los fármacos , Staphylococcus/genética , Staphylococcus/aislamiento & purificación , Brasil , Antibacterianos/farmacología , Coagulasa/metabolismo , Animales , Clindamicina/farmacología , Meticilina/farmacología , Alimentación Animal/microbiología , Microbiología de Alimentos , Mascotas/microbiología , Farmacorresistencia Bacteriana Múltiple/genética
3.
One Health ; 17: 100591, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37388190

RESUMEN

Serratia marcescens is a Gram-negative bacterium presenting intrinsic resistance to polymyxins that has emerged as an important human pathogen. Although previous studies reported the occurrence of multidrug-resistance (MDR) S. marcescens isolates in the nosocomial settings, herein, we described isolates of this extensively drug-resistant (XDR) species recovered from stool samples of food-producing animals in the Brazilian Amazon region. Three carbapenem-resistant S. marcescens strains were recovered from stool samples of poultry and cattle. Genetic similarity analysis showed that these strains belonged to the same clone. Whole-genome sequencing of a representative strain (SMA412) revealed a resistome composed of genes encoding resistance to ß-lactams [blaKPC-2, blaSRT-2], aminoglycosides [aac(6')-Ib3, aac(6')-Ic, aph(3')-VIa], quinolones [aac(6')-Ib-cr], sulfonamides [sul2], and tetracyclines [tet(41)]. In addition, the analysis of the virulome demonstrated the presence of important genes involved in the pathogenicity of this species (lipBCD, pigP, flhC, flhD, phlA, shlA, and shlB). Our data demonstrate that food-animal production can act as reservoirs for MDR and virulent strains of S. marcescens.

4.
Microorganisms ; 11(4)2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37110475

RESUMEN

The detection of KPC-type carbapenemases is necessary for guiding appropriate antibiotic therapy and the implementation of antimicrobial stewardship and infection control measures. Currently, few tests are capable of differentiating carbapenemase types, restricting the lab reports to their presence or not. The aim of this work was to raise antibodies and develop an ELISA test to detect KPC-2 and its D179 mutants. The ELISA-KPC test was designed using rabbit and mouse polyclonal antibodies. Four different protocols were tested to select the bacterial inoculum with the highest sensitivity and specificity rates. The standardisation procedure was performed using 109 previously characterised clinical isolates, showing 100% of sensitivity and 89% of specificity. The ELISA-KPC detected all isolates producing carbapenemases, including KPC variants displaying the ESBL phenotype such as KPC-33 and -66.

5.
Microorganisms ; 11(3)2023 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-36985155

RESUMEN

S. pseudintermedius is a known resident of the skin and mucous membranes and a constituent of the normal microbiota of dogs. It has also been recognized as an opportunistic and zoonotic pathogen that is able to colonize humans and cause severe diseases, especially in immunocompromised hosts. Most importantly, methicillin-resistant S. pseudintermedius (MRSP), which is intrinsically multidrug-resistant, has emerged with serious public health consequences. The epidemiological situation is further exacerbated with reports of its zoonotic transmission and human infections which have been mostly attributed to the increasing frequency of dog ownership and close contact between dogs and humans. Evidence on the zoonotic transmission of MRSP from pet dogs to humans (such as dog owners, small-animal veterinarians, and other people in close proximity to dogs) is limited, especially due to the misidentification of S. pseudintermedius as S. aureus. Despite this fact, reports on the increasing emergence and spread of MRSP in humans have been increasing steadily over the years since its first documented report in 2006 in Belgium. The emergence of MRSP strains has further compromised treatment outcomes in both veterinary and human medicine as these strains are resistant to beta-lactam antimicrobials usually prescribed as first line treatment. Frustratingly, the limited awareness and surveillance of the zoonotic transmission of S. pseudintermedius have underestimated their extent of transmission, prevalence, epidemiology, and public health significance. In order to fill this gap of information, this review focused on detailed reports on zoonotic transmission, human colonization, and infections by S. pseudintermedius, their pathogenic features, antimicrobial resistance profiles, epidemiology, risk factors, and treatment. In writing this review, we searched Web of Science, PubMed, and SCOPUS databases using the keyword "Staphylococcus pseudintermedius AND humans". A phylogenetic tree to determine the genetic relatedness/diversity of publicly available genomes of S. pseudintermedius was also constructed.

6.
Antibiotics (Basel) ; 12(2)2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36830148

RESUMEN

Fosfomycin disodium is a potential therapeutic option to manage difficult-to-treat infections, especially when combined with other antimicrobials. In this study, we evaluated the activity of fosfomycin in combination with meropenem or polymyxin B against contemporaneous KPC-2-producing K. pneumoniae clinical isolates (KPC-KPN). Synergistic activity was assessed by checkerboard (CKA) and time-kill (TKA) assays. TKA was performed using serum peak and trough concentrations. The activity of these combinations was also assessed in the Galleria mellonella model. Biofilm disruption was assessed by the microtiter plate technique. CKA resulted in an 8- to 2048-fold decrease in meropenem MIC, restoring meropenem activity for 82.4% of the isolates when combined with fosfomycin. For the fosfomycin + polymyxin B combination, a 2- to 128-fold reduction in polymyxin B MIC was achieved, restoring polymyxin B activity for 47% of the isolates. TKA resulted in the synergism of fosfomycin + meropenem (3.0-6.7 log10 CFU/mL decrease) and fosfomycin + polymyxin B (6.0-6.2 log10 CFU/mL decrease) at peak concentrations. All larvae treated with fosfomycin + meropenem survived. Larvae survival rate was higher with fosfomycin monotherapy (95%) than that observed for fosfomycin + polymyxin B (75%) (p-value < 0.0001). Finally, a higher biofilm disruption was observed under exposure to fosfomycin + polymyxin B (2.4-3.4-fold reduction). In summary, we observed a synergistic effect of fosfomycin + meropenem and fosfomycin + polymyxin B combinations, in vitro and in vivo, against KPC-KPN, as well as biofilm disruption.

7.
Microorganisms, v. 11, n. 4, 1052, abr. 2023
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4878

RESUMEN

The detection of KPC-type carbapenemases is necessary for guiding appropriate antibiotic therapy and the implementation of antimicrobial stewardship and infection control measures. Currently, few tests are capable of differentiating carbapenemase types, restricting the lab reports to their presence or not. The aim of this work was to raise antibodies and develop an ELISA test to detect KPC-2 and its D179 mutants. The ELISA-KPC test was designed using rabbit and mouse polyclonal antibodies. Four different protocols were tested to select the bacterial inoculum with the highest sensitivity and specificity rates. The standardisation procedure was performed using 109 previously characterised clinical isolates, showing 100% of sensitivity and 89% of specificity. The ELISA-KPC detected all isolates producing carbapenemases, including KPC variants displaying the ESBL phenotype such as KPC-33 and -66.

8.
Antibiotics (Basel) ; 11(12)2022 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-36551493

RESUMEN

This study aimed to characterize a Klebsiella pneumoniae strain (KP411) recovered from the stool samples of poultry (Gallus gallus) in the Brazilian Amazon Region. The whole-genome sequencing of KP411 revealed the presence of an important arsenal of antimicrobial resistance genes to ß-lactams (blaCTX-M-14, blaTEM-1B, blaKPC-2, blaSVH-11), aminoglycosides [aph(3″)- Ib, aph(6)-Id, aph(3')-Ia], sulfonamides (sul1, sul2), quinolones (oqxAB), fosfomycin (fosAKP), and macrolides [mph(A)]. Furthermore, our analyses revealed that the KP411 strain belongs to the ST258 clonal lineage, which is one of the main epidemic clones responsible for the dissemination of KPC-2 worldwide. Our data suggest that food-producing animals may act as reservoirs of multidrug-resistant K. pneumoniae belonging to the ST258 clone, and, consequently, contribute to their dissemination to humans and the environment.

9.
Microb Drug Resist ; 28(11): 1037-1042, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36318798

RESUMEN

Typing carbapenem-resistant Klebsiella pneumoniae (CR-KPN) is crucial in controlling their dissemination and solving outbreaks. In this context, we searched for an effective, faster, and cheaper alternative technique to type KPN by analyzing the fosAKP sequence. We analyzed the nucleotide sequences of chromosomal fosAKP gene in 350 KPN genomes (70 per sequence type [ST] or clonal complex [CC]). Assembly genomes were randomly downloaded from NCBI and annotated using RAST in PATRIC platform. The isolate STs were verified using multilocus sequence typing 2.0 by the Center for Genomic Epidemiology. Chromosomally encoded fosAKP was confirmed in MLplasmid, and the sequence alignments were performed in Clustal Omega. The amino acid sequences were analyzed using SNAP2 and SMART platforms. Out of the 70 genomes analyzed for each ST/CC, we observed 100% fosA sequence identity for CC258/11, ST15, ST307, and ST101. For ST16, only two fosA sequences were different from each other. We observed differences in amino acid sequences at positions 25 and 79 (ST16) and 86 (ST16, ST101). The C-terminal (amino acid 138, 139, 140) was different for each cluster. None of these polymorphisms is related to the protein active site. Moreover, L25Q (ST16) polymorphism was predicted to probably affect the protein function. We observed that chromosomal fosAKP sequences from KPN are highly conserved in ST15, ST307, ST16, ST101, and CC258/11, suggesting fosAKP sequencing as an alternative, easier, faster, and less expensive technique in identifying epidemiological STs for KPN, and discriminating them from CC258/11.


Asunto(s)
Infecciones por Klebsiella , Klebsiella pneumoniae , Humanos , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Infecciones por Klebsiella/tratamiento farmacológico , Infecciones por Klebsiella/epidemiología , beta-Lactamasas/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Antibacterianos/farmacología , Tipificación de Secuencias Multilocus , Células Clonales/metabolismo , Pruebas de Sensibilidad Microbiana
10.
Comp Immunol Microbiol Infect Dis ; 89: 101870, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36088796

RESUMEN

To determine the antibiotypes and frequency of toxin genes in methicillin-resistant Staphylococcus pseudintermedius (MRSP), 281 nasal swab samples were collected from dogs and dog guardians in Abakaliki, Southeastern Nigeria. Antimicrobial susceptibility testing was determined by disc diffusion technique while detection of toxin genes was carried out by PCR. Exactly 41 (28.7 %) and 6 (4.3 %) MRSP were obtained from dogs and dog guardians respectively. Isolates exhibited resistance (100-16.7 %) to amoxicillin-clavulanic acid, cephalosporins, fluoroquinolones, and carbapenems. Seccanine, lukD, siet, and exi toxin genes were harboured by 42 (89.4 %), 47 (100 %), 37 (78.7 %), and 2 (4.3 %) MRSP isolates respectively. This study has shown that dogs and dog guardians in Abakaliki, Southeastern Nigeria are colonized by multiple drug-resistant MRSP which harbour toxin genes. This represents a significant public health problem in veterinary and human medicine.


Asunto(s)
Antiinfecciosos , Enfermedades de los Perros , Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Combinación Amoxicilina-Clavulanato de Potasio , Animales , Antibacterianos/farmacología , Antiinfecciosos/farmacología , Carbapenémicos , Cefalosporinas , Enfermedades de los Perros/epidemiología , Perros , Fluoroquinolonas , Humanos , Resistencia a la Meticilina/genética , Pruebas de Sensibilidad Microbiana/veterinaria , Nigeria/epidemiología , Infecciones Estafilocócicas/epidemiología , Infecciones Estafilocócicas/veterinaria , Staphylococcus
11.
J Glob Antimicrob Resist ; 31: 165-166, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36064106

RESUMEN

OBJECTIVE: Herein, this study aimed to perform the genomic characterization of a blaKPC-2 positive Klebsiella pneumoniae (KP1.1JP) strain isolated from the surface water of river located the Brazilian Amazon region. METHODS: Antimicrobial susceptibility testing was performed following BrCAST/EUCAST recommendations. Genomic DNA was extracted and sequenced using the Illumina® NextSeq platform and the assembly of the generated reads was performed using the SPAdes software. Research on the sequence type, resistance and virulence encoding genes, and plasmid replicon typing was carried out. RESULTS: The KP1.1JP strain was resistant to all ß-lactams, aminoglycosides, and fluoroquinolones tested. The genome size was 5 626 346 bp, distributed in 203 contigs and a guanine and cytosine content of 57.02%. The values of N50 and N75 were 285 583 bp and 173 927 bp, respectively. We verified that KP1.1JP belongs to ST101 and carries genes encoding resistance to ß-lactams (blaCTX-M-15, blaTEM-1B, blaOXA-1, blaSVH-182, and blaKPC-2), aminoglycosides [aac(3')-IIa, aph(3')-Vla], fluoroquinolones [aac(6')-Ib-cr], phenicol (catA1, catA2, catB3), tetracycline [tet(D)], trimethoprim (dfrA14), and fosfomycin (fosA). Additionally, the following virulence encoding genes were also detected: mrkABCDFHIJ (Fimbria type 3); fimABCDRFGHIK (Fimbria type 1); entABCDEFS and fepABCDG (siderophores); iroN, irp1, and irp2 (salmochelins); fyuA and ybtAEPQSTUX (yersiniabactin); and iutA (aerobactin). CONCLUSIONS: We report the occurrence of a K. pneumoniae ST101 strain carrying blaKPC-2 gene in an Amazon river in Brazil. The genomic characteristics of this strain will contribute to a better understanding of the spread of pathogens of clinical importance in the environment based on a One Health perspective.


Asunto(s)
Klebsiella pneumoniae , beta-Lactamasas , Aminoglicósidos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , beta-Lactamasas/genética , beta-Lactamas , Brasil , Fluoroquinolonas , Pruebas de Sensibilidad Microbiana , Ríos , Secuenciación Completa del Genoma
12.
Microbiol Spectr ; 10(5): e0056522, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-35993730

RESUMEN

The epidemiology of antimicrobial resistance (AMR) is complex, with multiple interfaces (human-animal-environment). In this context, One Health surveillance is essential for understanding the distribution of microorganisms and antimicrobial resistance genes (ARGs). This report describes a multicentric study undertaken to evaluate the bacterial communities and resistomes of food-producing animals (cattle, poultry, and swine) and healthy humans sampled simultaneously from five Brazilian regions. Metagenomic analysis showed that a total of 21,029 unique species were identified in 107 rectal swabs collected from distinct hosts, the highest numbers of which belonged to the domain Bacteria, mainly Ruminiclostridium spp. and Bacteroides spp., and the order Enterobacterales. We detected 405 ARGs for 12 distinct antimicrobial classes. Genes encoding antibiotic-modifying enzymes were the most frequent, followed by genes related to target alteration and efflux systems. Interestingly, carbapenemase-encoding genes such as blaAIM-1, blaCAM-1, blaGIM-2, and blaHMB-1 were identified in distinct hosts. Our results revealed that, in general, the bacterial communities from humans were present in isolated clusters, except for the Northeastern region, where an overlap of the bacterial species from humans and food-producing animals was observed. Additionally, a large resistome was observed among all analyzed hosts, with emphasis on the presence of carbapenemase-encoding genes not previously reported in Latin America. IMPORTANCE Humans and food production animals have been reported to be important reservoirs of antimicrobial resistance (AMR) genes (ARGs). The frequency of these multidrug-resistant (MDR) bacteria tends to be higher in low- and middle-income countries (LMICs), due mainly to a lack of public health policies. Although studies on AMR in humans or animals have been carried out in Brazil, this is the first multicenter study that simultaneously collected rectal swabs from humans and food-producing animals for metagenomics. Our results indicate high microbial diversity among all analyzed hosts, and several ARGs for different antimicrobial classes were also found. As far as we know, we have detected for the first time ARGs encoding carbapenemases, such as blaAIM-1, blaCAM-1, blaGIM-2, and blaHMB-1, in Latin America. Thus, our results support the importance of metagenomics as a tool to track the colonization of food-producing animals and humans by antimicrobial-resistant bacteria. In addition, a network surveillance system called GUARANI, created for this study, is ready to be expanded and to collect additional data.


Asunto(s)
Antiinfecciosos , Farmacorresistencia Bacteriana , Humanos , Porcinos , Bovinos , Animales , Farmacorresistencia Bacteriana/genética , Brasil , Metagenómica/métodos , Bacterias , Antibacterianos/farmacología , Aves de Corral , Genes Bacterianos
13.
Microorganisms ; 10(6)2022 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-35744667

RESUMEN

Staphylococcus spp. remain the leading biofilm-forming agents causing orthopedic implant-associated infections (OIAI). This is a descriptive study of phenotypic and genomic features identified in clinical isolates of S. aureus and coagulase-negative Staphylococcus (CoNS) recovered from OIAIs patients that progressed to treatment failure. Ten isolates were identified by matrix-time-of-flight laser-assisted desorption mass spectrometry (MALDI-TOF-MS) and tested for antibiotic susceptibility and biofilm formation. Genotypic characteristics, including, MLST (Multi Locus Sequence Typing), SCCmec typing, virulence and resistance genes were assessed by whole-genome sequencing (WGS). All S. aureus harbored mecA, blaZ, and multiple resistance genes for aminoglycosides and quinolones. All MRSA were strong biofilm producers harboring the complete icaADBC and icaR operon. Seven CoNS isolates comprising five species (S. epidermidis, S. haemolyticus, S. sciuri, S. capitis and S. lugdunensis) were analyzed, with mecA gene detected in five isolates. S. haemolitycus (isolate 95), and S. lugdunensis were unable to form biofilm and did not harbor the complete icaADBCR operon. High variability of adhesion genes was detected, with atl, ebp, icaADBC operon, and IS256 being the most common. In conclusion, MRSA and CoNS isolates carrying genes for biofilm production, and resistance to ß-lactam and aminoglycosides are associated with treatment failure in OIAIs.

14.
Sci Data ; 9(1): 366, 2022 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-35752638

RESUMEN

The One Health concept is a global strategy to study the relationship between human and animal health and the transfer of pathogenic and non-pathogenic species between these systems. However, to the best of our knowledge, no data based on One Health genome-centric metagenomics are available in public repositories. Here, we present a dataset based on a pilot-study of 2,915 metagenome-assembled genomes (MAGs) of 107 samples from the human (N = 34), cattle (N = 28), swine (N = 15) and poultry (N = 30) gut microbiomes. Samples were collected from the five Brazilian geographical regions. Of the draft genomes, 1,273 were high-quality drafts (≥90% of completeness and ≤5% of contamination), and 1,642 were medium-quality drafts (≥50% of completeness and ≤10% of contamination). Taxonomic predictions were based on the alignment and concatenation of single-marker genes, and the most representative phyla were Bacteroidota, Firmicutes, and Proteobacteria. Many of these species represent potential pathogens that have already been described or potential new families, genera, and species with potential biotechnological applications. Analyses of this dataset will highlight discoveries about the ecology and functional role of pathogens and uncultivated Archaea and Bacteria from food-producing animals and humans. Furthermore, it also represents an opportunity to describe new species from underrepresented taxonomic groups.


Asunto(s)
Microbioma Gastrointestinal , Metagenoma , Animales , Archaea/genética , Bacterias/genética , Bovinos , Humanos , Metagenómica , Porcinos
15.
Braz J Microbiol ; 53(2): 785-789, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35138632

RESUMEN

The genus Raoultella spp. is comprised of four species, namely, R. electrica, R. ornithinolytica, R. planticola, and R. terrigena, which are rarely reported to cause infections in humans. This study aimed to characterize six strains of Raoultella spp. isolated from stool samples from patients with diarrhea. The strains included in the study were previously identified by biochemical methods as K. pneumoniae, during a surveillance study conducted in 1987. In the present study, the strains were re-identified by MALDI TOF and 16S rRNA sequencing and subsequently subjected to virulence gene screening by PCR, hemolytic activity, biofilm formation, hypermucoviscosity phenotype, capacity to interact with Caco-2 cells, and antimicrobial susceptibility test. Our results revealed that, among the six strains, three were identified as R. ornithinolytica and three as R. planticola. The genes related to iron uptake systems (aero1, aero2, iutA, entB, and ybtS) and adhesin (mrkD) were found in all strains. Furthermore, all strains demonstrated the ability to interact in vitro with Caco-2 cells and form biofilms. In general, the strains studied were sensitive to the antimicrobials tested; however, it was possible to observe high MICs for imipenem compared to ertapenem and meropenem and high minimal inhibitory concentrations (MICs) for ceftazidime, except for one strain. Our results show the occurrence of virulent strains of Raoultella spp. with high MICs for imipenem and ceftazidime causing diarrhea. We hope that our findings can contribute to the understanding of the evolution of this species since, as far as we know, these are the oldest isolates reported so far.


Asunto(s)
Ceftazidima , Imipenem , Antibacterianos/farmacología , Células CACO-2 , Diarrea , Enterobacteriaceae/genética , Humanos , Klebsiella pneumoniae/genética , Pruebas de Sensibilidad Microbiana , ARN Ribosómico 16S/genética
17.
Appl Environ Microbiol ; 87(16): e0074321, 2021 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-34085857

RESUMEN

Extraintestinal pathogenic Escherichia coli (ExPEC) is a leading cause of human and animal infections worldwide. The utilization of selective and differential media to facilitate the isolation and identification of E. coli from complex samples, such as water, food, sediment, and gut tissue, is common in epidemiological studies. During a surveillance study, we identified an E. coli strain isolated from human blood culture that displayed atypical light cream-colored colonies in chromogenic agar and was unable to produce ß-glucuronidase and ß-galactosidase in biochemical tests. Genomic analysis showed that the strain belongs to sequence type 59 (ST59) and phylogroup F. The evaluation in silico of 104 available sequenced lineages of ST59 complex showed that most of them belong to serotype O1:K1:H7, are ß-glucuronidase negative, and harbor a virulent genotype associated with the presence of important virulence markers such as pap, kpsE, chuA, fyuA, and yfcV. Most of them were isolated from extraintestinal human infections in diverse countries worldwide and could be clustered/subgrouped based on papAF allele analysis. Considering that all analyzed strains harbor a virulent genotype and most do not exhibit biochemical behavior typical of E. coli, we report that they could be misclassified or underestimated, especially in epidemiological studies where the screening criteria rely only on typical biochemical phenotypes, as happens when chromogenic media are used. IMPORTANCE The use of selective and differential media guides presumptive bacterial identification based on specific metabolic traits that are specific to each bacterial species. When a bacterial specimen displays an unusual phenotype in these media, this characteristic may lead to bacterial misidentification or a significant delay in its identification, putting a patient at risk depending on the infection type. In the present work, we describe a virulent E. coli sequence type (ST59) that does not produce beta-glucuronidase (GUS negative), production of which is the metabolic trait widely used for E. coli presumptive identification in diverse differential media. The recognition of this unusual metabolic trait may help in the proper identification of ST59 isolates, the identification of their reservoir, and the evaluation of the frequency of these pathogens in places where automatic identification methods are not available.


Asunto(s)
Infecciones por Escherichia coli/microbiología , Escherichia coli/patogenicidad , Anciano de 80 o más Años , Escherichia coli/clasificación , Escherichia coli/genética , Escherichia coli/aislamiento & purificación , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Heces/microbiología , Femenino , Proteínas Fimbrias/genética , Proteínas Fimbrias/metabolismo , Genotipo , Humanos , Filogenia , Virulencia
18.
Artículo en Inglés | MEDLINE | ID: mdl-32766163

RESUMEN

Although extraintestinal pathogenic Escherichia coli (ExPEC) are designated by their isolation site and grouped based on the type of host and the disease they cause, most diarrheagenic E. coli (DEC) are subdivided into several pathotypes based on the presence of specific virulence traits directly related to disease development. This scenario of a well-categorized E. coli collapsed after the German outbreak of 2011, caused by one strain bearing the virulence factors of two different DEC pathotypes (enteroaggregative E. coli and Shiga toxin-producing E. coli). Since the outbreak, many studies have shown that this phenomenon is more frequent than previously realized. Therefore, the terms hybrid- and hetero-pathogenic E. coli have been coined to describe new combinations of virulence factors among the classic E. coli pathotypes. In this review, we provide an overview of these classifications and highlight the E. coli genomic plasticity that results in some mixed E. coli pathotypes displaying novel pathogenic strategies, which lead to a new symptomatology related to E. coli diseases. In addition, as the capacity for genome interrogation has grown in the last few years, it is clear that genes encoding some virulence factors, such as Shiga toxin, are found among different E. coli pathotypes to which they have not traditionally been associated, perhaps foreshowing their emergence in new and severe outbreaks caused by such hybrid strains. Therefore, further studies regarding hetero-pathogenic and hybrid-pathogenic E. coli isolates are necessary to better understand and control the spread of these pathogens.


Asunto(s)
Infecciones por Escherichia coli , Proteínas de Escherichia coli , Escherichia coli Patógena Extraintestinal , Escherichia coli/genética , Humanos , Toxina Shiga , Factores de Virulencia/genética
19.
Microbiol Resour Announc ; 8(43)2019 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-31649078

RESUMEN

Uropathogenic Escherichia coli (UPEC) strains are responsible for most cases of urinary tract infections worldwide. We present the draft whole-genome sequence of the UPEC 252 strain, which carries the eae gene that encodes the intimin adhesin. Intimin promotes intimate adherence of enteropathogenic E. coli and enterohemorrhagic E. coli to intestinal cells.

20.
Pathog Dis ; 77(2)2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30865776

RESUMEN

Escherichia albertii are emerging enteropathogens, whose identification is difficult, as they share biochemical characteristics and some virulence-related genes with diarrheagenic Escherichia coli (DEC). Studies on phylogeny, phenotypic characteristics and potential virulence factors of human E. albertii strains are scarce. In this study, we identified by multiplex PCR five E. albertii among 106 strains isolated from diarrheic children in São Paulo, Brazil, which were previously classified as atypical enteropathogenic E. coli. All strains were investigated regarding their phylogeny, biochemical properties, virulence-related properties, antimicrobial resistance and presence of putative virulence-related genes. All strains belonged to different E. albertii lineages and adhered to and produced attaching and effacing lesions on HeLa cells. Three strains invaded Caco-2 cells, but did not persist intracellularly, and three formed biofilms on polystyrene surfaces. All strains were resistant to few antibiotics and only one carried a self-transmissible resistance plasmid. Finally, among 38 DEC and 18 extraintestinal pathogenic E. coli (ExPEC) virulence-related genes searched, six and three were detected, respectively, with paa and cdtB being found in all strains. Despite the limited number of strains, this study provided additional knowledge on human E. albertii virulence potential, showing that they share important virulence factors with DEC and ExPEC.


Asunto(s)
Diarrea/epidemiología , Diarrea/microbiología , Infecciones por Enterobacteriaceae/epidemiología , Infecciones por Enterobacteriaceae/microbiología , Escherichia/fisiología , Fenotipo , Antibacterianos/farmacología , Biopelículas , Brasil/epidemiología , Línea Celular , Niño , Preescolar , Escherichia/clasificación , Escherichia/aislamiento & purificación , Escherichia/patogenicidad , Genotipo , Humanos , Mucosa Intestinal , Pruebas de Sensibilidad Microbiana , Tipificación de Secuencias Multilocus , Filogenia , Serogrupo , Virulencia/genética , Factores de Virulencia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...