Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 12(1): 6006, 2021 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-34650059

RESUMEN

Detection and characterization of a different type of topological excitations, namely the domain wall (DW) skyrmion, has received increasing attention because the DW is ubiquitous from condensed matter to particle physics and cosmology. Here we present experimental evidence for the DW skyrmion as the ground state stabilized by long-range Coulomb interactions in a quantum Hall ferromagnet. We develop an alternative approach using nonlocal resistance measurements together with a local NMR probe to measure the effect of low current-induced dynamic nuclear polarization and thus to characterize the DW under equilibrium conditions. The dependence of nuclear spin relaxation in the DW on temperature, filling factor, quasiparticle localization, and effective magnetic fields allows us to interpret this ground state and its possible phase transitions in terms of Wigner solids of the DW skyrmion. These results demonstrate the importance of studying the intrinsic properties of quantum states that has been largely overlooked.

2.
Sci Rep ; 11(1): 10483, 2021 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-34006905

RESUMEN

A type-II InAs/AlAs[Formula: see text]Sb[Formula: see text] multiple-quantum well sample is investigated for the photoexcited carrier dynamics as a function of excitation photon energy and lattice temperature. Time-resolved measurements are performed using a near-infrared pump pulse, with photon energies near to and above the band gap, probed with a terahertz probe pulse. The transient terahertz absorption is characterized by a multi-rise, multi-decay function that captures long-lived decay times and a metastable state for an excess-photon energy of [Formula: see text] meV. For sufficient excess-photon energy, excitation of the metastable state is followed by a transition to the long-lived states. Excitation dependence of the long-lived states map onto a nearly-direct band gap ([Formula: see text]) density of states with an Urbach tail below [Formula: see text]. As temperature increases, the long-lived decay times increase [Formula: see text], due to the increased phonon interaction of the unintentional defect states, and by phonon stabilization of the hot carriers [Formula: see text]. Additionally, Auger (and/or trap-assisted Auger) scattering above the onset of the plateau may also contribute to longer hot-carrier lifetimes. Meanwhile, the initial decay component shows strong dependence on excitation energy and temperature, reflecting the complicated initial transfer of energy between valence-band and defect states, indicating methods to further prolong hot carriers for technological applications.

3.
Sci Rep ; 8(1): 12473, 2018 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-30127507

RESUMEN

Hot electrons established by the absorption of high-energy photons typically thermalize on a picosecond time scale in a semiconductor, dissipating energy via various phonon-mediated relaxation pathways. Here it is shown that a strong hot carrier distribution can be produced using a type-II quantum well structure. In such systems it is shown that the dominant hot carrier thermalization process is limited by the radiative recombination lifetime of electrons with reduced wavefunction overlap with holes. It is proposed that the subsequent reabsorption of acoustic and optical phonons is facilitated by a mismatch in phonon dispersions at the InAs-AlAsSb interface and serves to further stabilize hot electrons in this system. This lengthens the time scale for thermalization to nanoseconds and results in a hot electron distribution with a temperature of 490 K for a quantum well structure under steady-state illumination at room temperature.

4.
Nat Commun ; 8: 15084, 2017 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-28425462

RESUMEN

Resistively detected NMR (RDNMR) based on dynamic nuclear polarization (DNP) in a quantum Hall ferromagnet (QHF) is a highly sensitive method for the discovery of fascinating quantum Hall phases; however, the mechanism of this DNP and, in particular, the role of quantum Hall edge states in it are unclear. Here we demonstrate the important but previously unrecognized effect of chiral edge modes on the nuclear spin polarization. A side-by-side comparison of the RDNMR signals from Hall bar and Corbino disk configurations allows us to distinguish the contributions of bulk and edge states to DNP in QHF. The unidirectional current flow along chiral edge states makes the polarization robust to thermal fluctuations at high temperatures and makes it possible to observe a reciprocity principle of the RDNMR response. These findings help us better understand complex NMR responses in QHF, which has important implications for the development of RDNMR techniques.

5.
Nano Lett ; 5(2): 209-12, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15794597

RESUMEN

We have fabricated and characterized surface-emitting, spin-polarized light-emitting diodes with a Mn-doped InAs dilute magnetic quantum dot spin-injector and contact region grown by low-temperature molecular beam epitaxy, and an In(0.4)Ga(0.6)As quantum dot active region. Energy-dispersive X-ray and electron energy loss spectroscopies performed on individual dots indicate that the Mn atoms incorporate within the dots themselves. Circularly polarized light is observed up to 160 K with a maximum degree of circular polarization of 5.8% measured at 28 K, indicating high-temperature spin injection and device operation.


Asunto(s)
Arsenicales/química , Indio/química , Magnetismo , Manganeso/química , Nanotecnología/métodos , Nanotubos/química , Nanotubos/ultraestructura , Puntos Cuánticos , Anisotropía , Arsenicales/efectos de la radiación , Indio/efectos de la radiación , Luz , Manganeso/efectos de la radiación , Ensayo de Materiales , Nanotubos/análisis , Nanotubos/efectos de la radiación , Tamaño de la Partícula , Semiconductores , Marcadores de Spin
6.
Opt Lett ; 29(1): 122-4, 2004 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-14719681

RESUMEN

Quantum-cascade lasers operating at 4.7, 3.5, and 2.3 THz have been used to achieve cyclotron resonance in InAs and InSb quantum wells from liquid-helium temperatures to room temperature. This represents one of the first spectroscopic applications of terahertz quantum-cascade lasers. Results show that these compact lasers are convenient and reliable sources with adequate power and stability for this type of far-infrared magneto-optical study of solids. Their compactness promises interesting future applications in solid-state spectroscopy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...