Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Naunyn Schmiedebergs Arch Pharmacol ; 396(8): 1787-1796, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36843128

RESUMEN

Doxycycline (DOX) is a widely used antibiotic that is able to cross the blood-brain barrier. Several studies have shown its neuroprotective effect against neurodegeneration and have associated it with antioxidant, anti-apoptotic, and anti-inflammatory mechanisms. We have recently demonstrated that DOX mimics nerve growth factor (NGF) signaling in PC12 cells. However, the involvement of this mechanism in the neuroprotective effect of DOX is unknown. Axonal degeneration and synaptic loss are key events at the early stages of neurodegeneration, and precede the neuronal death in neurodegenerative diseases, including Parkinson's disease (PD). Therefore, the regeneration of the axonal and synaptic network might be beneficial in PD. The effect of DOX in PC12 cells treated with the Parkinsonian neurotoxin 1-methyl-4-phenylpyridinium (MPP+) was addressed. Doxycycline reduced the inhibition of neuritogenesis induced by MPP+, even in cells deprived of NGF. The mechanism involved the upregulation of GAP-43, synapsin I, ß-III-tubulin, F-actin, and neurofilament-200, proteins that are associated with axonal and synaptic plasticity. Considering the role of axonal degeneration and synaptic loss at the initial stages of PD, the recent advances in early diagnosis of neurodegeneration, and the advantages of drug repurposing, doxycycline is a promising candidate to treat PD.


Asunto(s)
Fármacos Neuroprotectores , Enfermedad de Parkinson , Ratas , Animales , Humanos , Regulación hacia Arriba , Doxiciclina/farmacología , Doxiciclina/uso terapéutico , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Factor de Crecimiento Nervioso/metabolismo , Factor de Crecimiento Nervioso/uso terapéutico , Proteínas/metabolismo , Enfermedad de Parkinson/tratamiento farmacológico , Células PC12 , Tubulina (Proteína)/metabolismo , 1-Metil-4-fenilpiridinio/toxicidad , 1-Metil-4-fenilpiridinio/uso terapéutico
2.
Naunyn Schmiedebergs Arch Pharmacol ; 395(6): 659-672, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35246694

RESUMEN

Neurodegenerative diseases are characterized by progressive loss of the structure and function of specific neuronal populations, and have been associated with reduced neurotrophic support. Neurotrophins, like NGF (nerve growth factor), are endogenous proteins that induce neuritogenesis and modulate axonal growth, branching, and synapsis; however, their therapeutic application is limited mainly by low stability, short half-life, and inability to cross the blood-brain barrier (BBB). Small neurotrophic molecules that have suitable pharmacokinetics and are able to cross the BBB are potential candidates for neuroprotection. Baccharin is a bioactive small molecule isolated from Brazilian green propolis. In the present study, we investigated the neurotrophic and neuroprotective potential of baccharin in the PC12 cell neuronal model. We used pharmacological inhibitors (K252a, LY294002, and U0126), and ELISA (phospho-trkA, phospho-Akt, and phospho-MEK) to investigate the involvement of trkA receptor, PI3k/Akt pathway, and MAPK/Erk pathway, respectively. Additionally, we evaluated the expression of axonal (GAP-43) and synaptic (synapsin I) proteins by western blot. The results showed that baccharin induces neuritogenesis in NGF-deprived PC12 cells, through activation of trkA receptor and the downstream signaling cascades (PI3K/Akt and MAPK/ERK), which is the same neurotrophic pathway activated by NGF in PC12 cells and neurons. Baccharin also induced the expression of GAP-43 and synapsin I, which mediate axonal and synaptic plasticity, respectively. Additionally, in silico predictions of baccharin showed favorable physicochemical properties, pharmacokinetics, drug-likeness, and medicinal chemistry friendliness. Altogether, these findings suggest that baccharin is a promising neurotrophic agent whose therapeutic application in neurodegeneration should be further investigated.


Asunto(s)
Factor de Crecimiento Nervioso , Própolis , Animales , Brasil , Proteína GAP-43/metabolismo , Factor de Crecimiento Nervioso/metabolismo , Factor de Crecimiento Nervioso/farmacología , Células PC12 , Fosfatidilinositol 3-Quinasas/metabolismo , Própolis/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Receptor trkA/metabolismo , Transducción de Señal , Sinapsinas/metabolismo , Tricotecenos
3.
Chem Biol Interact ; 341: 109454, 2021 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-33798505

RESUMEN

Doxycycline has been used as antibiotic since the 1960s. Recently, studies have shown that doxycycline is neuroprotective in models of neurodegenerative diseases and brain injuries, mainly due to anti-inflammatory and anti-apoptotic effects. However, it is not known if doxycycline has neurotrophic potential, which is relevant, considering the role of axonal degeneration at the early stages of neurodegeneration in Alzheimer's disease, Amyotrophic Lateral Sclerosis and Parkinson's disease as well as in normal aging. Axons are preceded by the formation of neurites, the hallmark of the neuronal differentiation induced by neurotrophins like NGF. Therefore, the modulation of neurotrophin receptors aimed at formation and regeneration of axons has been proposed as a strategy to delay the progression of neurodegeneration and has gained relevance as new techniques for early diagnosis arise. Based on these premises, we investigated the potential of doxycycline to mimic the effects of Nerve Growth Factor (NGF) with focus on the signaling pathways and neuronal modulators of neurite initiation, growth and branching. We used PC12 cells, a neuronal model widely employed to study the neurotrophic pathways and mechanisms induced by NGF. Results showed that doxycycline induced neurite outgrowth via activation of the trkA receptor and the downstream signaling pathways, PI3K/Akt and MAPK/ERK, without inducing the expression of NGF. Doxycycline also increased the expression of GAP-43, synapsin I and NF200, proteins involved in axonal and synaptic plasticity. Altogether, these data demonstrate, for the first time, the neurotrophic potential of doxycycline, which might be useful to restore the neuronal connectivity lost at the initial phase of neurodegeneration.


Asunto(s)
Antibacterianos/farmacología , Doxiciclina/farmacología , Factor de Crecimiento Nervioso/metabolismo , Animales , Carbazoles/farmacología , Supervivencia Celular/efectos de los fármacos , Proteína GAP-43/metabolismo , Alcaloides Indólicos/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Factor de Crecimiento Nervioso/farmacología , Proteínas de Neurofilamentos/metabolismo , Proyección Neuronal/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Células PC12 , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Receptor trkA/antagonistas & inhibidores , Receptor trkA/metabolismo , Transducción de Señal/efectos de los fármacos , Sinapsinas/metabolismo
4.
Neurotox Res ; 39(3): 886-896, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33666886

RESUMEN

Carvacrol (CARV) is a phytochemical widely used as flavoring, preservative, and fragrance in food and cosmetic industries. CARV is able to cross the blood-brain barrier (BBB) and has demonstrated protective potential against neurodegenerative diseases by several mechanisms, including antioxidant, anti-inflammatory, anticholinesterase, and antiapoptotic effects. However, it is not known whether CARV is able to modulate axonal and synaptic plasticity, crucial events in cognition, memory, and learning. Abnormalities in axonal and synaptic plasticity, low levels of neurotrophins, and bioenergetic failure have been associated with the pathogenesis of neurodegenerative diseases, including Parkinson's (PD) and Alzheimer's diseases (ADs). Small lipophilic molecules with neurotrophic activity might be able to restore the axonal and synaptic networks that are lost in neurodegenerative processes. Therefore, this study investigated the neurotrophic potential of CARV in PC12 cell-based neuronal model. Carvacrol induced neurite outgrowth by activating the NGF high-affinity trkA receptor and the downstream PI3K-AKT and MAPK-ERK pathways, without depending on NGF. In addition, CARV increased the expression of proteins involved in neuronal plasticity (ß-tubulin III, F-actin, 200-kDa neurofilament, GAP-43 and synapsin-I) and improved bioenergetics (AMPKα, p-AMPKα, and ATP). Our study showed, for the first time, a promising neurotrophic mechanism of CARV that could be beneficial in neurodegenerative and neurological diseases.


Asunto(s)
Axones/efectos de los fármacos , Cimenos/farmacología , Factores de Crecimiento Nervioso/farmacología , Regeneración Nerviosa/efectos de los fármacos , Sinapsis/efectos de los fármacos , Animales , Axones/fisiología , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Relación Dosis-Respuesta a Droga , Factor de Crecimiento Nervioso/farmacología , Regeneración Nerviosa/fisiología , Células PC12 , Ratas , Sinapsis/fisiología
5.
Food Chem Toxicol ; 136: 111079, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31891754

RESUMEN

Cisplatin has dramatically improved the survival rate of cancer patients, but it has also increased the prevalence of hearing and neurological deficits in this population. Cisplatin induces ototoxicity, peripheral (most prevalent) and central (rare) neurotoxicity. This review addresses the ototoxicity and the neurotoxicity associated with cisplatin-based chemotherapy, providing an integrated view of the potential protective agents that have been evaluated in vitro, in vivo and in clinical trials, their targets and mechanisms of protection and their effects on the antitumor activity of cisplatin. So far, the findings are insufficient to support the use of any oto- or neuroprotective agent before, during or after cisplatin chemotherapy. Despite their promising effects in vitro and in animal studies, many agents have not been evaluated in clinical trials. Additionally, the clinical trials have limitations concerning the sample size, controls, measurement, heterogeneous groups, several arms of treatment, short follow-up or no blinding. Besides that, for most agents, the effects on the antitumor activity of cisplatin have not been evaluated in tumor-bearing animals, which discourages clinical trials. Further well-designed randomized controlled clinical trials are necessary to definitely demonstrate the effectiveness of the oto- or neuroprotective agents proposed by animal and in vitro studies.


Asunto(s)
Antineoplásicos/efectos adversos , Cisplatino/efectos adversos , Síndromes de Neurotoxicidad/prevención & control , Ototoxicidad/prevención & control , Sustancias Protectoras/administración & dosificación , Animales , Antineoplásicos/uso terapéutico , Cisplatino/uso terapéutico , Humanos , Neoplasias/tratamiento farmacológico , Síndromes de Neurotoxicidad/etiología , Ototoxicidad/etiología
6.
Neurotox Res ; 36(1): 175-192, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31016689

RESUMEN

Peripheral sensory neuropathy (PSN) is a well-known side effect of cisplatin characterized by axonal damage. In the early stage of neurotoxicity, cisplatin affects proteins that modulate neurite outgrowth and neuroplasticity, without inducing mitochondrial damage or apoptosis. There are no preventive therapies for cisplatin-induced peripheral neuropathy; therefore, measures to improve axonal growth and connectivity would be beneficial. Caffeic acid phenethyl ester (CAPE) is a bioactive component of propolis with neurotrophic and neuroprotective activities. We have recently showed that CAPE protects against cisplatin-induced neurotoxicity by activating NGF high-affinity receptors (trkA) and inducing neuroplasticity. We have now assessed other potential early targets of cisplatin and additional mechanisms involved in the neuroprotection of CAPE. Cisplatin reduced axonal cytoskeletal proteins (F-actin and ß-III-tubulin) without inducing oxidative damage in PC12 cells. It also reduced energy-related proteins (AMPK α, p-AMPK α, and SIRT1) and glucose uptake. At this stage of neurotoxicity, glutamate excitotoxicity is not involved in the toxicity of cisplatin. CAPE attenuated the downregulation of the cytoskeleton and energy-related markers as well as SIRT1 and phosphorylated AMPK α. Moreover, the neuroprotective mechanism of CAPE also involves the activation of the neurotrophic signaling pathways MAPK/Erk and PI3k/Akt. The PI3K/Akt pathway is involved in the upregulation of SIRT1 induced by CAPE, but not in the upregulation of cytoskeletal proteins. Altogether, these findings suggest that the neuroprotective effect of CAPE against cisplatin-induced neurotoxicity involves both (a) a neurotrophic mechanism that mimics the mechanism triggered by the NGF itself and (b) a non-neurotrophic mechanism that upregulates the cytoskeletal proteins.


Asunto(s)
Ácidos Cafeicos/farmacología , Cisplatino/toxicidad , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Alcohol Feniletílico/análogos & derivados , Transducción de Señal/efectos de los fármacos , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Células COS , Diferenciación Celular/efectos de los fármacos , Chlorocebus aethiops , Proteínas del Citoesqueleto/metabolismo , Glucosa/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Neuronas/metabolismo , Células PC12 , Alcohol Feniletílico/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Especies Reactivas de Oxígeno/metabolismo , Sirtuina 1/metabolismo
7.
Neurotox Res ; 34(1): 32-46, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29260495

RESUMEN

Cisplatin is a highly effective chemotherapeutic drug that is toxic to the peripheral nervous system. Findings suggest that axons are early targets of the neurotoxicity of cisplatin. Although many compounds have been reported as neuroprotective, there is no effective treatment against the neurotoxicity of cisplatin. Caffeic acid phenethyl ester (CAPE) is a propolis component with neuroprotective potential mainly attributed to antioxidant and anti-inflammatory mechanisms. We have recently demonstrated the neurotrophic potential of CAPE in a cellular model of neurotoxicity related to Parkinson's disease. Now, we have assessed the neurotrophic and neuroprotective effects of CAPE against cisplatin-induced neurotoxicity in PC12 cells. CAPE (10 µM) attenuated the inhibition of neuritogenesis and the downregulation of markers of neuroplasticity (GAP-43, synapsin I, synaptophysin, and 200-kD neurofilament) induced by cisplatin (5 µM). This concentration of cisplatin does not affect cell viability, and it was used in order to assess the early neurotoxic events triggered by cisplatin. When a lethal dose of cisplatin was used (IC50 = 32 µM), CAPE (10 µM) increased cell viability. The neurotrophic effect of CAPE is not dependent on NGF nor is it additive to the effect of NGF, but it might involve the activation of the NGF-high-affinity receptors (trkA). The involvement of other neurotrophin receptors such as trkB and trkC is unlikely. This is the first study to demonstrate the protective potential of CAPE against the neurotoxicity of cisplatin and to suggest the involvement of trkA receptors in the neuroprotective mechanism of CAPE. Based on these findings, the beneficial effect of CAPE on cisplatin-induced peripheral neuropathy should be further investigated.


Asunto(s)
Ácidos Cafeicos/farmacología , Cisplatino/farmacología , Factor de Crecimiento Nervioso/metabolismo , Fármacos Neuroprotectores/farmacología , Neurotoxinas/farmacología , Alcohol Feniletílico/análogos & derivados , Transducción de Señal/efectos de los fármacos , Análisis de Varianza , Animales , Diferenciación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/farmacología , Proteína GAP-43/metabolismo , Neuroblastoma/patología , Proteínas de Neurofilamentos/metabolismo , Proyección Neuronal/efectos de los fármacos , Células PC12/efectos de los fármacos , Alcohol Feniletílico/farmacología , Ratas , Sinapsinas/metabolismo , Sinaptofisina/metabolismo
8.
Chem Biol Interact ; 261: 86-95, 2017 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-27871898

RESUMEN

Beta-caryophyllene (BCP) is a phytocannabinoid whose neuroprotective activity has been mainly associated with selective activation of cannabinoid-type-2 (CB2) receptors, inhibition of microglial activation and decrease of inflammation. Here, we addressed the potential of BCP to induce neuritogenesis in PC12 cells, a model system for primary neuronal cells that express trkA receptors, respond to NGF and do not express CB2 receptors. We demonstrated that BCP increases the survival and activates the NGF-specific receptor trkA in NGF-deprived PC12 cells, without increasing the expression of NGF itself. The neuritogenic effect of BCP in PC12 cells was abolished by k252a, an inhibitor of the NGF-specific receptor trkA. Accordingly, BCP did not induce neuritogenesis in SH-SY5Y neuroblastoma cells, a neuronal model that does not express trkA receptors and do not respond to NGF. Additionally, we demonstrated that BCP increases the expression of axonal-plasticity-associated proteins (GAP-43, synapsin and synaptophysin) in PC12 cells. It is known that these proteins are up-regulated by NGF in neurons and neuron-like cells, such as PC12 cells. Altogether, these findings suggest that BCP activates trka receptors and induces neuritogenesis by a mechanism independent of NGF or cannabinoid receptors. This is the first study to show such effects of BCP and their beneficial role in neurodegenerative processes should be further investigated.


Asunto(s)
Cannabinoides/farmacología , Neuritas/metabolismo , Neurogénesis/efectos de los fármacos , Receptores de Cannabinoides/metabolismo , Sesquiterpenos/farmacología , Animales , Carbazoles/farmacología , Diferenciación Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Humanos , Alcaloides Indólicos/farmacología , Factor de Crecimiento Nervioso/farmacología , Proteínas del Tejido Nervioso/metabolismo , Neuritas/efectos de los fármacos , Células PC12 , Sesquiterpenos Policíclicos , Ratas , Receptor trkA/antagonistas & inhibidores , Receptor trkA/metabolismo
9.
Neurochem Res ; 41(11): 2993-3003, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27473385

RESUMEN

Cisplatin is the most effective and neurotoxic platinum chemotherapeutic agent. It induces a peripheral neuropathy characterized by distal axonal degeneration that might progress to degeneration of cell bodies and apoptosis. Most symptoms occur nearby distal axonal branches and axonal degeneration might induce peripheral neuropathy regardless neuronal apoptosis. The toxic mechanism of cisplatin has been mainly associated with DNA damage, but cisplatin might also affect neurite outgrowth. Nevertheless, the neurotoxic mechanism of cisplatin remains unclear. We investigated the early effects of cisplatin on axonal plasticity by using non-cytotoxic concentrations of cisplatin and PC12 cells as a model of neurite outgrowth and differentiation. PC12 cells express NGF-receptors (trkA) and respond to NGF by forming neurites, branches and synaptic vesicles. For comparison, we used a neuronal model (SH-SY5Y cells) that does not express trkA nor responds to NGF. Cisplatin did not change NGF expression in PC12 cells and decreased neurite outgrowth in both models, suggesting a NGF/trkA independent mechanism. It also reduced axonal growth (GAP-43) and synaptic (synapsin I and synaptophysin) proteins in PC12 cells, without inducing mitochondrial damage or apoptosis. Therefore, cisplatin might affect axonal plasticity before DNA damage, NGF/trkA down-regulation, mitochondrial damage or neuronal apoptosis. This is the first study to show that neuroplasticity-related proteins might be early targets of the neurotoxic action of cisplatin and their role on cisplatin-induced peripheral neuropathy should be investigated in vivo.


Asunto(s)
Cisplatino/farmacología , Factor de Crecimiento Nervioso/metabolismo , Proyección Neuronal/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Animales , Axones/efectos de los fármacos , Axones/metabolismo , Diferenciación Celular/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Proteína GAP-43/metabolismo , Neuritas/efectos de los fármacos , Neuritas/fisiología , Células PC12 , Ratas , Receptores de Factor de Crecimiento Nervioso/metabolismo
10.
Toxicol In Vitro ; 30(1 Pt B): 231-40, 2015 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-26556726

RESUMEN

Cannabidiol (CBD) is a non-psychoactive constituent of Cannabis sativa with potential to treat neurodegenerative diseases. Its neuroprotection has been mainly associated with anti-inflammatory and antioxidant events; however, other mechanisms might be involved. We investigated the involvement of neuritogenesis, NGF receptors (trkA), NGF, and neuronal proteins in the mechanism of neuroprotection of CBD against MPP(+) toxicity in PC12 cells. CBD increased cell viability, differentiation, and the expression of axonal (GAP-43) and synaptic (synaptophysin and synapsin I) proteins. Its neuritogenic effect was not dependent or additive to NGF, but it was inhibited by K252a (trkA inhibitor). CBD did not increase the expression of NGF, but protected against its decrease induced by MPP(+), probably by an indirect mechanism. We also evaluated the neuritogenesis in SH-SY5Y cells, which do not express trkA receptors. CBD did not induce neuritogenesis in this cellular model, which supports the involvement of trkA receptors. This is the first study to report the involvement of neuronal proteins and trkA in the neuroprotection of CBD. Our findings suggest that CBD has a neurorestorative potential independent of NGF that might contribute to its neuroprotection against MPP(+), a neurotoxin relevant to Parkinson's disease.


Asunto(s)
1-Metil-4-fenilpiridinio/toxicidad , Cannabidiol/farmacología , Proteínas del Tejido Nervioso/biosíntesis , Neuritas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Enfermedad de Parkinson/prevención & control , Receptor trkA/fisiología , Animales , Axones/metabolismo , Humanos , Factor de Crecimiento Nervioso/fisiología , Neuritas/fisiología , Neuroblastoma/patología , Células PC12 , Ratas , Sinapsis/metabolismo , Regulación hacia Arriba
11.
Toxicol In Vitro ; 29(5): 1079-87, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25910916

RESUMEN

Organophosphorus-induced delayed neuropathy (OPIDN) is a central-peripheral distal axonopathy that develops 8-14 days after poisoning by a neuropathic organophosphorus compound (OP). Several OPs that caused OPIDN were withdrawn from the agricultural market due to induction of serious delayed effects. Therefore, the development of in vitro screenings able to differentiate neuropathic from non-neuropathic OPs is of crucial importance. Thus, the aim of this study was to evaluate the differences in the neurotoxic effects of mipafox (neuropathic OP) and paraoxon (non-neuropathic OP) in SH-SY5Y human neuroblastoma cells, using the inhibition and aging of neuropathy target esterase (NTE), inhibition of acetylcholinesterase (AChE), activation of calpain, neurite outgrowth, cytotoxicity and intracellular calcium as indicators. Additionally, the potential of fenamiphos and profenofos to cause acute and/or delayed effects was also evaluated. Mipafox had the lowest IC50 and induced the highest percentage of aging of NTE among the OPs evaluated. Only mipafox was able to cause calpain activation after 24 h of incubation. Concentrations of mipafox and fenamiphos which inhibited at least 70% of NTE were also able to reduce neurite outgrowth. Cytotoxicity was higher in non-neuropathic than in neuropathic OPs while the intracellular calcium levels were higher in neuropathic than in non-neuropathic OPs. In conclusion, the SH-SY5Y cellular model was selective to differentiate neuropathic from non-neuropathic OPs; fenamiphos, but not profenofos presented results compatible with the induction of OPIDN.


Asunto(s)
Inhibidores de la Colinesterasa/toxicidad , Insecticidas/toxicidad , Compuestos Organofosforados/toxicidad , Acetilcolinesterasa/metabolismo , Calcio/metabolismo , Calpaína/metabolismo , Hidrolasas de Éster Carboxílico/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Humanos , Neuritas/efectos de los fármacos , Síndromes de Neurotoxicidad
12.
Neurotoxicology ; 45: 131-8, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25454720

RESUMEN

Neurite loss is an early event in neurodegenerative diseases; therefore, the regeneration of the network of neurites constitutes an interesting strategy of treatment for such disorders. Neurotrophic factors play a critical role in neuronal regeneration, but their clinical use is limited by their inability to cross the blood brain barrier. Oxidative and inflammatory events are implicated in neurodegeneration and antioxidant compounds have been suggested as potential neuroprotectors. The protective potential of CAPE (caffeic acid phenethyl ester) has been shown in different models of neurotoxicity (in vitro and in vivo) and it has been associated with immune-modulatory, antioxidant and anti-inflammatory properties; however, other mechanisms might be involved. The present study demonstrates that CAPE protects PC12 cells from the cellular death induced by the dopaminergic neurotoxin MPP(+) by increasing the network of neurites. Results showed that CAPE induced the formation, elongation and ramification of neurites in PC12 cells non-stimulated with NGF (nerve growth factor) and inhibited the shortage of neurites induced by the dopaminergic neurotoxin. These effects were associated with increased expression of neuron-typical proteins responsible for axonal growth (GAP-43) and synaptogenesis (synaptophysin and synapsin I). It is noteworthy that, unlike neurotrophins, CAPE would be able to cross the blood brain barrier and exert its neurotrophic effects in the brain. This study corroborates the therapeutic potential of CAPE in neurodegenerative diseases while proposes the involvement of neuroplasticity in the mechanism of neuroprotection.


Asunto(s)
1-Metil-4-fenilpiridinio/toxicidad , Ácidos Cafeicos/uso terapéutico , Neuritas/efectos de los fármacos , Fármacos Neuroprotectores/uso terapéutico , Alcohol Feniletílico/análogos & derivados , Animales , Muerte Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Proteína GAP-43/metabolismo , Factor de Crecimiento Nervioso/metabolismo , Células PC12 , Alcohol Feniletílico/uso terapéutico , Ratas , Sinapsinas/metabolismo , Sinaptofisina/metabolismo
13.
Arch Toxicol ; 86(8): 1233-50, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22382776

RESUMEN

Cisplatin is a highly effective antitumor agent whose clinical application is limited by the inherent nephrotoxicity. The current measures of nephroprotection used in patients receiving cisplatin are not satisfactory, and studies have focused on the investigation of new possible protective strategies. Many pathways involved in cisplatin nephrotoxicity have been delineated and proposed as targets for nephroprotection, and many new potentially protective agents have been reported. The multiple pathways which lead to renal damage and renal cell death have points of convergence and share some common modulators. The most frequent event among all the described pathways is the oxidative stress that acts as both a trigger and a result. The most exploited pathways, the proposed protective strategies, the achievements obtained so far as well as conflicting data are summarized and discussed in this review, providing a general view of the knowledge accumulated with past and recent research on this subject.


Asunto(s)
Antineoplásicos/toxicidad , Cisplatino/toxicidad , Enfermedades Renales/inducido químicamente , Enfermedades Renales/prevención & control , Riñón/efectos de los fármacos , Sustancias Protectoras/uso terapéutico , Animales , Muerte Celular/efectos de los fármacos , Citoprotección , Humanos , Riñón/metabolismo , Riñón/patología , Enfermedades Renales/metabolismo , Enfermedades Renales/patología , Transducción de Señal/efectos de los fármacos
14.
Chem Biol Interact ; 179(2-3): 402-6, 2009 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-19330886

RESUMEN

PDT has been used in the treatment of malignant brain tumors for the last 2 decades. It is based on the interaction of a photosensitizer (PS) and light of an appropriate wavelength, with generation of oxygen species, mainly singlet oxygen. Brain is particularly susceptible to oxidative stress; therefore the study of PDT effects on cerebral mitochondria might provide mechanistic insights into the action of the therapy, contributing to its optimization. In the present study, we addressed the mitochondrial toxicity of the second generation PS, zinc phthalocyanine tetrasulfonate (ZnPcS4), on rat brain isolated mitochondria, by investigating both intrinsic toxicity and photodynamic action. At higher concentrations (15 and 25 microM/mg protein) ZnPcS4 caused (a) inhibition of state-3 respiration and (b) decrease of RCR and ADP/O. Electrochemical potential, state-4 respiration and Ca2+ retention capacity were not affected. Cytochrome c release was not observed. Coupled with 600 or 1800 mJ/cm2 laser irradiation, ZnPcS4 (5 microM/mg protein) caused more intense effects on state 3, RCR and ADP/O; moreover state-4 respiration and membrane potential were affected. Besides that, Ca2+ and cytochrome c release were induced. Cyclosporine A (CsA) decreased Ca2+ release and ameliorated the electrochemical potential, suggesting that membrane permeability transition (MPT) might be involved in the photodynamic effect. The low intrinsic toxicity and the high photodynamic effect on rat brain mitochondria induced by ZnPcS4, allied to its improved photophysical properties, might indicate its potential for the treatment of malignant brain tumors.


Asunto(s)
Encéfalo/citología , Indoles/farmacología , Mitocondrias/efectos de los fármacos , Compuestos Organometálicos/farmacología , Fotoquimioterapia , Animales , Calcio/metabolismo , Calcio/efectos de la radiación , Citocromos c/efectos de los fármacos , Citocromos c/metabolismo , Citocromos c/efectos de la radiación , Rayos Láser , Mitocondrias/metabolismo , Mitocondrias/efectos de la radiación , Membranas Mitocondriales/efectos de los fármacos , Membranas Mitocondriales/efectos de la radiación , Ratas , Factores de Tiempo
15.
Chem Biol Interact ; 170(3): 177-86, 2007 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-17850778

RESUMEN

Cisplatin is one of the most effective chemotherapeutic agents. However, at higher doses liver injury may occur. The purpose of this study was to explore whether the hydroxyl radical scavenger dimethylthiourea (DMTU) protects against cisplatin-induced oxidative damage in vivo and to define the mitochondrial pathways involved in cytoprotection. Adult male Wistar rats (200-220 g) were divided into four groups of eight animals each. The control group was treated only with an intraperitoneal (i.p.) injection of saline solution (1 ml/100 g body weight). The DMTU group was given only DMTU (500 mg/kg body weight, i.p), followed by 125 mg/kg body weight, i.p. (twice a day) until sacrifice. The cisplatin group was given a single injection of cisplatin (10 mg/kg body weight, i.p.). The DMTU+cisplatin group was given DMTU (500 mg/kg body weight, i.p.), just before the cisplatin injection (10 mg/kg body weight, i.p.), followed by injections of DMTU (125 mg/kg body weight, i.p.) twice a day until sacrifice (72 h after the treatment). DMTU did not present any direct effect on mitochondria and substantially inhibited cisplatin-induced mitochondrial damage in liver, therefore preventing elevation of AST and ALT serum levels. DMTU protected against (a) decreased hepatic ATP levels; (b) lipid peroxidation; (c) cardiolipin oxidation; (d) sulfhydryl protein oxidation; (e) mitochondrial membrane rigidification; (f) GSH oxidation; (g) NADPH oxidation; (h) apoptosis. Results suggest that antioxidants, particularly hydroxyl radical scavengers, protect liver mitochondria against cisplatin-induced oxidative damage. Several mitochondrial changes were delineated and proposed as interesting targets for cytoprotective strategy.


Asunto(s)
Cisplatino/toxicidad , Hígado/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Tiourea/análogos & derivados , Adenosina Trifosfato/metabolismo , Animales , Apoptosis/efectos de los fármacos , Enfermedad Hepática Inducida por Sustancias y Drogas , Citoprotección/efectos de los fármacos , Hígado/citología , Hígado/metabolismo , Hepatopatías/metabolismo , Hepatopatías/patología , Hepatopatías/fisiopatología , Masculino , Mitocondrias/metabolismo , Membranas Mitocondriales/efectos de los fármacos , Oxidación-Reducción/efectos de los fármacos , Ratas , Ratas Wistar , Tiourea/farmacología
16.
J Pharm Biomed Anal ; 40(2): 389-96, 2006 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-16243469

RESUMEN

A LC/MS/MS method for the quantitative determination of lorazepam in human plasma and urine samples was developed and validated. The enantioselective assay allowed to separate the enantiomers and to verify the stereochemical instability of lorazepam. The linearity assessed for lorazepam unchanged was 0.2-20 ng of each enantiomer/ml plasma and 0.2-15 ng of each enantiomer/ml urine. The linearity assessed for total lorazepam (after enzymatic hydrolysis) was 1-30 ng of each enantiomer/ml plasma and 10-150 ng of each enantiomer/ml urine. The coefficients of variation obtained for the intra- and interassay precision were less than 15%. The method was applied to the investigation of the kinetic disposition and metabolism of racemic lorazepam administered as a single oral dose of 2 mg to a parturient. The occurrence of racemization required the calculation of the pharmacokinetic parameters as enantiomeric mixtures of lorazepam (t(1/2a) 3.5h; K(a) 0.198 ngh(-1); t(1/2) 11.5h; beta 0.060 h(-1); AUC(0-infinity) 192.1ngh/ml; CLt/f 2.41ml/minkg; Vd/f 173.5l; Fel 0.41%, and Cl(R) 0.0099 ml/minkg) and its metabolite lorazepam-glucuronide (t(1/2f) 1.2h; K(f) 0.578 h(-1); t(1/2) 16.6h; beta 0.042 h(-1); AUC(0-infinity) 207.6 ngh/ml; Fel 51.80%, and Cl(R) 98.32 ml/minkg). However, the determined confidence limits make the method suitable for application to clinical pharmacokinetic studies, even if the quantification of both the enantiomers is required.


Asunto(s)
Ansiolíticos/farmacocinética , Cromatografía Liquida/métodos , Lorazepam/análogos & derivados , Acetonitrilos , Ansiolíticos/sangre , Ansiolíticos/orina , Estabilidad de Medicamentos , Femenino , Humanos , Lorazepam/sangre , Lorazepam/farmacocinética , Lorazepam/orina , Parto/metabolismo , Embarazo , Reproducibilidad de los Resultados , Espectrometría de Masa por Ionización de Electrospray
17.
Artículo en Inglés | MEDLINE | ID: mdl-14581082

RESUMEN

We describe here the first method for the enantioselective analysis of the calcium antagonist lercanidipine in human plasma by high performance liquid chromatography (HPLC) employing tandem mass spectrometric (MS) detection. Routine determination of lercanidipine enantiomers in human plasma in the working range of 0.025-50.0 ng ml(-1) plasma for each enantiomer with an accuracy and precision less than 15% was possible. Application of the method to a stereospecific study of the pharmacokinetics showed that plasma levels after an oral dose of rac-lercanidipine administered to a healthy volunteer were found to be higher for the (S)-enantiomer.


Asunto(s)
Antihipertensivos/sangre , Bloqueadores de los Canales de Calcio/sangre , Cromatografía Líquida de Alta Presión/métodos , Dihidropiridinas/sangre , Antihipertensivos/farmacocinética , Bloqueadores de los Canales de Calcio/farmacocinética , Dihidropiridinas/farmacocinética , Humanos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Estereoisomerismo
18.
Eur J Clin Pharmacol ; 58(9): 607-14, 2002 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-12483453

RESUMEN

OBJECTIVE: Nisoldipine (N) is a dihydropyridine calcium antagonist marketed as a racemic mixture and used for the treatment of hypertension. In the present study, we investigated the influence of type-2 diabetes mellitus (DM) on the enantioselective pharmacokinetic and dynamic parameters of N. METHODS: Seventeen hypertensive patients, nine of them with DM, were investigated in a cross-over study with administration of rac-N as coat-core tablets (20 mg day(-1)) or placebo for 15 days each. Serial blood samples (0-24 h) were collected on the 15th day, and 24-h ambulatory blood pressure (BP) monitoring was simultaneously evaluated. N enantiomers in plasma samples were analysed using chiral high-performance liquid chromatography combined with gas chromatography/mass spectrometry. The enantiomeric ratios differing from one were evaluated using the Wilcoxon test, and the results are reported as means with the 95% confidence intervals. A lidocaine (L) test was carried out as an in vivo marker of CYP3A4 (and CYP1A2) activities. RESULTS: The following differences were observed between the (+)-N and (-)-N enantiomers, respectively, in the patients presenting with DM (means and ranges): C(max) 3.9 (1.7-6.1) ng ml(-1) versus 0.7 (0.4-1.0) ng ml(-1), AUC(0-24) 51.5 (29.0-74.0) ng ml(-1) h versus 9.4 (5.9-12.8) ng ml(-1) h, and Cl/f 3.6 (1.9-5.4) l h(-1) kg(-1) versus 18.7 (11.7-25.7) l h(-1) kg(-1). The Cl/f value of (+)-N was lower (Mann-Whitney test) in patients with DM: 6.0 (4.3-7.5) l h(-1) kg(-1) versus 3.6 (1.9-5.4) l h(-1) kg(-1). The same observation was made for the (-)-N, with Cl/f reaching 38.8 (26.8-51.0) l h(-1) kg(-1) and 18.7 (11.7-25.7) l h(-1) kg(-1) for the non-diabetic and DM groups, respectively. The L test resulted in higher ratios (P < 0.05) of plasma L/MEGX concentrations (30 min after i.v. L) for DM (11.1 vs 18.6). N significantly reduced systolic and diastolic BP (P < 0.05, Wilcoxon test) in all patients investigated relative to placebo. No differences in BP reduction were observed between diabetic and non-diabetic patients. N significantly increased noradrenaline concentrations in plasma of both patient groups. The data also demonstrated that the plasma concentrations of noradrenaline 30 min after N administration were lower (P < 0.05) in diabetic (mean 2.86 pmol ml(-1)) than in non-diabetic patients (4.80 pmol ml(-1)). CONCLUSIONS: The present data permit us to infer that type-2 diabetes mellitus alters the kinetic disposition of the (+)-N eutomer and (-)-N distomer, presumably due to a lower activity of CYP3A4, although it does not modify the clinical effect brought about by the reduction in BP.


Asunto(s)
Antihipertensivos/farmacología , Antihipertensivos/farmacocinética , Diabetes Mellitus Tipo 2/metabolismo , Hipertensión/metabolismo , Nisoldipino/farmacología , Nisoldipino/farmacocinética , Adulto , Antihipertensivos/uso terapéutico , Área Bajo la Curva , Biomarcadores , Glucemia/análisis , Presión Sanguínea/efectos de los fármacos , Estudios Cruzados , Citocromo P-450 CYP1A2/metabolismo , Citocromo P-450 CYP3A , Sistema Enzimático del Citocromo P-450/metabolismo , Preparaciones de Acción Retardada , Diabetes Mellitus Tipo 2/complicaciones , Femenino , Frecuencia Cardíaca/efectos de los fármacos , Humanos , Hipertensión/complicaciones , Hipertensión/tratamiento farmacológico , Lidocaína , Masculino , Persona de Mediana Edad , Nisoldipino/uso terapéutico , Norepinefrina/sangre , Estereoisomerismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...