Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Strength Cond Res ; 37(10): 2091-2105, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37369087

RESUMEN

ABSTRACT: Santos, PDG, Vaz, JR, Correia, J, Neto, T, and Pezarat-Correia, P. Long-term neurophysiological adaptations to strength training: a systematic review with cross-sectional studies. J Strength Cond Res 37(10): 2091-2105, 2023-Neuromuscular adaptations to strength training are an extensively studied topic in sports sciences. However, there is scarce information about how neural mechanisms during force production differ between trained and untrained individuals. The purpose of this systematic review is to better understand the differences between highly trained and untrained individuals to establish the long-term neural adaptations to strength training. Three databases were used for the article search (PubMed, Web of Science, and Scopus). Studies were included if they compared groups of resistance-trained with untrained people, aged 18-40 year, and acquired electromyography (EMG) signals during strength tasks. Twenty articles met the eligibility criteria. Generally, strength-trained individuals produced greater maximal voluntary activation, while reducing muscle activity in submaximal tasks, which may affect the acute response to strength training. These individuals also presented lower co-contraction of the antagonist muscles, although it depends on the specific training background. Global intermuscular coordination may be another important mechanism of adaptation in response to long-term strength training; however, further research is necessary to understand how it develops over time. Although these results should be carefully interpreted because of the great disparity of analyzed variables and methods of EMG processing, chronic neural adaptations seem to be decisive to greater force production. It is crucial to know the timings at which these adaptations stagnate and need to be stimulated with advanced training methods. Thus, training programs should be adapted to training status because the same stimulus in different training stages will lead to different responses.


Asunto(s)
Entrenamiento de Fuerza , Deportes , Humanos , Entrenamiento de Fuerza/métodos , Estudios Transversales , Electromiografía , Adaptación Fisiológica/fisiología , Músculo Esquelético/fisiología , Fuerza Muscular/fisiología
2.
Nutrients ; 15(2)2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36678156

RESUMEN

This study examined the effects of four weeks of resistance training combined with time-restricted eating (TRE) vs. habitual diet on fat and fat-free mass as well as maximum and explosive force production in healthy, trained participants (18 males, aged 23.7 ± 2.6 years). The order of dieting was randomized and counterbalanced, and the participants served as their own controls. TRE involved an 8-h eating window and non-TRE involved a habitual meal pattern. Participants completed performance strength tests and body composition scans at baseline and post-intervention. The participants followed a structured training routine during each dietary intervention (four sets of maximum repetitions at 85% 1RM in five dynamic exercises, three times/week). Both interventions elicited deceases in fat mass (p < 0.05) but not in fat-free mass. After training (controlling for baseline values as covariates), non-TRE was compatible with better lower body jump performance than TRE (p < 0.05). Conversely, training with TRE elicited higher values in terms of peak force and dynamic strength index at the level of the upper body (p < 0.05). Thus, it can be concluded that there were no differences in fat mass and fat-free mass changes between interventions in already trained young males. Additionally, while the combination of TRE and resistance training might be beneficial for individuals focusing on developing high-speed strength performance at the upper body level, this is not applicable to those focusing on training the lower body.


Asunto(s)
Entrenamiento de Fuerza , Humanos , Masculino , Composición Corporal , Ejercicio Físico , Conducta Alimentaria , Fuerza Muscular
3.
Sensors (Basel) ; 21(5)2021 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-33803182

RESUMEN

Muscle coordination in human movement has been assessed through muscle synergy analysis. In sports science, this procedure has been mainly applied to the comparison between highly trained and unexperienced participants. However, the lack of knowledge regarding strength training exercises led us to study the differences in neural strategies to perform the power clean between weightlifters and untrained individuals. Synergies were extracted from electromyograms of 16 muscles of ten unexperienced participants and seven weightlifters. To evaluate differences, we determined the pairwise correlations for the synergy components and electromyographic profiles. While the shape of activation patterns presented strong correlations across participants of each group, the weightings of each muscle were more variable. The three extracted synergies were shifted in time with the unexperienced group anticipating synergy #1 (-2.46 ± 18.7%; p < 0.001) and #2 (-4.60 ± 5.71%; p < 0.001) and delaying synergy #3 (1.86 ± 17.39%; p = 0.01). Moreover, muscle vectors presented more inter-group variability, changing the composition of synergy #1 and #3. These results may indicate an adaptation in intermuscular coordination with training, and athletes in an initial phase of training should attempt to delay the hip extension (synergy #1), as well as the upper-limb flexion (synergy #2).


Asunto(s)
Músculo Esquelético , Deportes , Adaptación Fisiológica , Electromiografía , Ejercicio Físico , Humanos
4.
J Funct Morphol Kinesiol ; 5(4)2020 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-33467290

RESUMEN

Muscle synergy extraction has been utilized to investigate muscle coordination in human movement, namely in sports. The reliability of the method has been proposed, although it has not been assessed previously during a complex sportive task. Therefore, the aim of the study was to evaluate intra- and inter-day reliability of a strength training complex task, the power clean, assessing participants' variability in the task across sets and days. Twelve unexperienced participants performed four sets of power cleans in two test days after strength tests, and muscle synergies were extracted from electromyography (EMG) data of 16 muscles. Three muscle synergies accounted for almost 90% of variance accounted for (VAF) across sets and days. Intra-day VAF, muscle synergy vectors, synergy activation coefficients and individual EMG profiles showed high similarity values. Inter-day muscle synergy vectors had moderate similarity, while the variables regarding temporal activation were still strongly related. The present findings revealed that the muscle synergies extracted during the power clean remained stable across sets and days in unexperienced participants. Thus, the mathematical procedure for the extraction of muscle synergies through nonnegative matrix factorization (NMF) may be considered a reliable method to study muscle coordination adaptations from muscle strength programs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...