Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Foods ; 13(1)2023 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-38201092

RESUMEN

Despite advances in diagnosis and therapy, breast cancer remains the leading cause of death in many countries. Green tea (GT) has been proposed to play a crucial role in cancer chemoprevention. Although extensive research has been conducted on GT phytochemicals, most experimental studies concentrate mainly on commercial formulations or isolated catechins. This study presents a comparative investigation into the anticancer properties of green tea extract (GTE) and epigallocatechin-3-gallate (EGCG) in a three-dimensional (3D) MCF-7 breast cancer cell culture. MCF-7 spheroids were exposed to GTE or EGCG, and effects on 3D culture formation, growth, cell viability, and migration were examined. GTE inhibits cell migration and the formation of breast cancer spheroids more effectively than EGCG, while inducing more pronounced morphological changes in the spheroids' structure. These findings suggest that the food matrix improves GTE effects on breast cancer spheroids, supporting the hypothesis that a mixture of phytochemicals might enhance its anticancer potential.

2.
Foods ; 10(12)2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34945706

RESUMEN

Green tea (GT) has been shown to play an important role in cancer chemoprevention. However, the related molecular mechanisms need to be further explored, especially regarding the use of GT extract (GTE) from the food matrix. For this study, epigallocatechin gallate (EGCG) and epigallocatechin (EGC) were identified in GTE, representing 42 and 40% of the total polyphenols, respectively. MDA-MB-231 (p53-p.R280K mutant) and MCF-7 (wild-type p53) breast tumor cells and MCF-10A non-tumoral cells were exposed to GTE for 24-48 h and cell viability was assessed in the presence of p53 inhibitor pifithrin-α. GTE selectively targeted breast tumor cells without cytotoxic effect on non-tumoral cells and p53 inhibition led to an increase in viable cells, especially in MCF-7, suggesting the involvement of p53 in GTE-induced cytotoxicity. GTE was also effective in reducing MCF-7 and MDA-MD-231 cell migration by 30 and 50%, respectively. An increment in p53 and p21 expression stimulated by GTE was observed in MCF-7, and the opposite phenomenon was found in MDA-MB-231 cells, with a redistribution of mutant-p53 from the nucleus and no differences in p21 levels. All these findings provide insights into the action of GTE and support its anticarcinogenic potential on breast tumor cells.

3.
Molecules ; 25(15)2020 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-32752302

RESUMEN

Phytochemicals and their metabolites are not considered essential nutrients in humans, although an increasing number of well-conducted studies are linking their higher intake with a lower incidence of non-communicable diseases, including cancer. This review summarizes the current findings concerning the molecular mechanisms of bioactive compounds from grapes and red wine and their metabolites on breast cancer-the most commonly occurring cancer in women-chemoprevention and treatment. Flavonoid compounds like flavonols, monomeric catechins, proanthocyanidins, anthocyanins, anthocyanidins and non-flavonoid phenolic compounds, such as resveratrol, as well as their metabolites, are discussed with respect to structure and metabolism/bioavailability. In addition, a broad discussion regarding in vitro, in vivo and clinical trials about the chemoprevention and therapy using these molecules is presented.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/prevención & control , Fitoterapia , Vitis/química , Vino/análisis , Anticarcinógenos/química , Anticarcinógenos/farmacología , Neoplasias de la Mama/metabolismo , Quimioprevención , Femenino , Flavonoides/química , Flavonoides/farmacología , Flavonoides/uso terapéutico , Humanos , Técnicas In Vitro , Estructura Molecular , Fitoquímicos/química , Fitoquímicos/farmacología , Fitoquímicos/uso terapéutico , Extractos Vegetales/química , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Polifenoles/química , Polifenoles/farmacología , Polifenoles/uso terapéutico
4.
Oncotarget ; 9(49): 29112-29122, 2018 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-30018739

RESUMEN

One potential target for cancer therapeutics is the tumor suppressor p53, which is mutated in more than 50% of malignant tumors. Loss of function (LoF), dominant negative (DN) and gain of function (GoF) mutations in p53 are associated with amyloid aggregation. We tested the potential of resveratrol, a naturally occurring polyphenol, to interact and prevent the aggregation of wild-type and mutant p53 in vitro using fluorescence spectroscopy techniques and in human breast cancer cells (MDA-MB-231, HCC-70 and MCF-7) using immunofluorescence co-localization assays. Based on our data, an interaction occurs between resveratrol and the wild-type p53 core domain (p53C). In addition, resveratrol and its derivatives pterostilbene and piceatannol inhibit mutant p53C aggregation in vitro. Additionally, resveratrol reduces mutant p53 protein aggregation in MDA-MB-231 and HCC-70 cells but not in the wild-type p53 cell line MCF-7. To verify the effects of resveratrol on tumorigenicity, cell proliferation and cell migration assays were performed using MDA-MB-231 cells. Resveratrol significantly reduced the proliferative and migratory capabilities of these cells. Our study provides evidence that resveratrol directly modulates p53, enhancing our understanding of the mechanisms involved in p53 aggregation and its potential as a therapeutic strategy for cancer treatment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...