Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(23)2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-38068963

RESUMEN

The jacalin-related lectins (JRLs) are widely distributed in plants and are involved in plant development and multiple stress responses. However, the characteristics of the HvJRL gene family at the genome-wide level and the roles of JRLs in barley's response to low-nitrogen (LN) stress have been rarely reported. In this study, 32 HvJRL genes were identified and unevenly distributed at both ends of the seven chromosomes in barley. HvJRL proteins generally exhibited low sequence similarity but shared conserved jacalin domains by multiple sequence analysis. These proteins were classified into seven subfamilies based on phylogenetic analysis, with a similar gene structure and conserved motifs in the same subfamily. The HvJRL promoters contained a large number of diverse cis-elements associated with hormonal response and stress regulation. Based on the phylogenetic relationships and functionally known JRL homologs, it was predicted that some HvJRLs have the potential to serve functions in multiple stress responses but not nutrition deficiency stress. Subsequently, nine differentially expressed genes (DEGs) encoding eight HvJRL proteins were identified in two barley genotypes with different LN tolerance by transcriptome analysis. Furthermore, 35S:HvHorcH transgenic Arabidopsis seedlings did enhance LN tolerance, which indicated that HvHorcH may be an important regulator of LN stress response (LNSR). The HvJRL DEGs identified herein could provide new candidate genes for LN tolerance studies.


Asunto(s)
Arabidopsis , Hordeum , Arabidopsis/genética , Arabidopsis/metabolismo , Lectinas/metabolismo , Hordeum/metabolismo , Nitrógeno/metabolismo , Filogenia , Perfilación de la Expresión Génica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico/genética
2.
Microorganisms ; 10(10)2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36296291

RESUMEN

Broussonetia papyrifera has a high lignocellulose content leading to poor palatability and low digestion rate of ruminants. Thus, dynamic profiles of fermentation lignocellulose characteristics, microbial community structure, potential function, and interspecific relationships of B. papyrifera mixing with wheat bran in different ratios: 100:0 (BP100), 90:10 (BP90), 80:20 (BP80), and 65:35 (BP65) were investigated on ensiling days 5, 15, 30, and 50. The results showed that adding bran increased the degradation rate of hemicellulose, neutral detergent fiber, and the activities of filter paper cellulase, endoglucanase, acid protease, and neutral protease, especially in the ratio of 65:35. Lactobacillus, Pediococcus, and Weissella genus bacteria were the dominant genera in silage fermentation, and Pediococcus and Weissella genus bacteria regulated the process of silage fermentation. Compared with monospecific B. papyrifera silage, adding bran significantly increased the abundance of Weissella sp., and improved bacterial fermentation potential in BP65 (p < 0.05). Distance-based redundancy analysis showed that lactic acid bacteria (LAB) were significantly positive correlated with most lignocellulose content and degrading enzymes activities, while Monascus sp. and Syncephalastrum sp. were opposite (p < 0.05). Co-occurrence network analysis indicated that there were significant differences in microbial networks among different mixing ratios of B. papyrifera silage prepared with bran. There was a more complex, highly diverse and less competitive co-occurrence network in BP65, which was helpful to silage fermentation. In conclusion, B. papyrifera ensiled with bran improved the microbial community structure and the interspecific relationship and reduced the content of lignocellulose.

3.
Sci Rep ; 11(1): 12182, 2021 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-34108579

RESUMEN

Stress caused by pathogens strongly damages plants. Developing products to control plant disease is an important challenge in sustainable agriculture. In this study, a heat-killed endophytic bacterium (HKEB), Bacillus aryabhattai, is used to induce plant defense against fungal and bacterial pathogens, and the main defense pathways used by the HKEB to activate plant defense are revealed. The HKEB induced high protection against different pathogens through the salicylic and jasmonic acid pathways. We report the presence of gentisic acid in the HKEB for the first time. These results show that HKEBs may be a useful tool for the management of plant diseases.


Asunto(s)
Arabidopsis/metabolismo , Bacillus/fisiología , Gentisatos/metabolismo , Calor , Nicotiana/metabolismo , Enfermedades de las Plantas/inmunología , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/inmunología , Arabidopsis/microbiología , Bacillus/química , Ciclopentanos/metabolismo , Regulación de la Expresión Génica de las Plantas , Oxilipinas/metabolismo , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Ácido Salicílico/metabolismo , Nicotiana/genética , Nicotiana/inmunología , Nicotiana/microbiología
4.
Front Microbiol ; 12: 629395, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34017315

RESUMEN

Banana is a major tropical fruit crop but banana production worldwide is seriously threatened due to Fusarium wilt. Fusarium oxysporum f. sp. cubense (Foc), the causal agent of Fusarium wilt of banana (also referred as Panama disease) is an asexual, soil inhabiting facultative parasite. Foc isolates can be classified into three races that are not defined genetically, but for their pathogenicity to different banana cultivars. Despite mycotoxins being some of the best studied virulence factors of phytopathogenic fungi and these have been useful for the prediction of Foc virulence on banana plants, toxins produced by Foc race 2 strains have not been previously identified. The aim of this contribution was to identify the phytotoxic metabolites closely related to banana wilt caused by a Foc race 2 strain. We used an in vitro bioassay on detached banana leaves to evaluate the specificity of the microbial culture filtrates before a partial purification and further identification of Foc race 2 phytotoxins. A 29-day-old host-specific culture filtrate was obtained but specificity of culture filtrate was unrecovered after partial purification. The non-specific phytotoxins were characterized as fusaric acid, beauvericin, and enniatin A. Whereas some, if not all, of these phytotoxins are important virulence factors, a proteinaceous fraction from the specific 29-day-old culture filtrate protected the leaves of the resistant banana cultivar from damage caused by such phytotoxic metabolites.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...