Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Genes (Basel) ; 14(6)2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-37372407

RESUMEN

One of the strategies to overcome diseases or abiotic stress in crops is the use of improved varieties. Genetic improvement could be accomplished through different methods, including conventional breeding, induced mutation, genetic transformation, or gene editing. The gene function and regulated expression through promoters are necessary for transgenic crops to improve specific traits. The variety of promoter sequences has increased in the generation of genetically modified crops because they could lead to the expression of the gene responsible for the improved trait in a specific manner. Therefore, the characterization of the promoter activity is necessary for the generation of biotechnological crops. That is why several analyses have focused on identifying and isolating promoters using techniques such as reverse transcriptase-polymerase chain reaction (RT-PCR), genetic libraries, cloning, and sequencing. Promoter analysis involves the plant genetic transformation method, a potent tool for determining the promoter activity and function of genes in plants, contributing to understanding gene regulation and plant development. Furthermore, the study of promoters that play a fundamental role in gene regulation is highly relevant. The study of regulation and development in transgenic organisms has made it possible to understand the benefits of directing gene expression in a temporal, spatial, and even controlled manner, confirming the great diversity of promoters discovered and developed. Therefore, promoters are a crucial tool in biotechnological processes to ensure the correct expression of a gene. This review highlights various types of promoters and their functionality in the generation of genetically modified crops.


Asunto(s)
Productos Agrícolas , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Productos Agrícolas/genética , Regulación de la Expresión Génica de las Plantas/genética , Fitomejoramiento , Regiones Promotoras Genéticas
2.
Genes (Basel) ; 14(1)2022 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-36672828

RESUMEN

The use of medicinal plants is the basis of traditional healthcare. Recently, the use of herbal medicine has been increasing among consumers due to availability, economy, and less side effect. For instance, the hemiparasite plant Corynaea crassa has medicinal properties and could be found in some regions of America, from Costa Rica to Bolivia. Phytochemical and genetic characterization of medicinal plants is needed for proper identification of metabolites responsible for medicinal properties and for genotyping, respectively. Moreover, characterization of medicinal plants through the use of DNA barcodes is an important tool for phylogenetic analysis and identification of species; furthermore, complemented with phytochemical analysis, both are useful for identification of plant species and quality control of medicinal products. The objective of this study was to analyze the species of C. crassa collected in Ecuador and Peru from the phylogenetic and phytochemical point of view. Polymerase chain reaction (PCR) was performed for amplification of the internal transcribed spacer 1 (ITS1) region after DNA extraction of samples of C. crassa. Blast analysis was performed in the GenBank database with the ITS1 sequences obtained from two accessions of C. crassa from Ecuador (GenBank accession numbers OM471920 and OM471919 for isolates CIBE-17 and CIBE-18, respectively) and three from Peru (GenBank accession numbers OM471921, OM471922, and OM471923 for isolates CIBE-13, CIBE-14, and CIBE-15, respectively). The accessions available in the GenBank were used for phylogenetic analysis. For the phytochemical analysis, hydroalcoholic extracts were obtained by maceration using 80% ethanol as solvent, followed by a derivatization process and analysis by gas chromatography-mass spectrometry. Based on the phylogenetic analysis of the C. crassa samples, the ITS1 sequence could be used to differentiate C. crassa of different locations. The samples of C. crassa from Ecuador and Peru are more similar between them than with other clades including Helosis spp. The phytochemical study revealed differences in the presence and relative abundance of some metabolites; mainly eugenol, 1,4-lactone arabinonic acid, dimethoxyrabelomycin and azelaic acid, which are reported for the first time for the species under study and the genus Corynaea. These results are the first findings on the combined analysis using genetic and phytochemical analysis for C. crassa, which could be used as a useful tool for quality control of the C. crassa species in medicinal products.


Asunto(s)
Balanophoraceae , Plantas Medicinales , Ecuador , Perú , Filogenia , Cromatografía de Gases y Espectrometría de Masas , Plantas Medicinales/genética , Fitoquímicos
3.
PeerJ ; 9: e11028, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33777526

RESUMEN

Smilax plants are distributed in tropical, subtropical, and temperate regions in both hemispheres of the world. They are used extensively in traditional medicines in a number of countries. However, morphological and molecular barcodes analysis, which may assist in the taxonomic identification of species, are lacking in Ecuador. In order to evaluate the micromorphological characteristics of these plants, cross sections of Smilax purhampuy leaves were obtained manually. The rhizome powder, which is typically used in traditional medicines, was analyzed for micromorphological characteristics. All samples were clarified with 1% sodium hypochlorite. Tissues were colored with 1% safranin in water and were fixed with glycerinated gelatin. DNA was extracted from the leaves using a modified CTAB method for molecular barcode characterization and PCR was performed using primers to amplify the different loci including the plastid genome regions atpF-atpH spacer, matK gene, rbcL gene, rpoB gene, rpoC1 gene, psbK-psbI spacer, and trnH-psbA spacer; and the nuclear DNA sequence ITS2. A DNA sequence similarity search was performed using BLAST in the GenBank nr database and phylogenetic analysis was performed using the maximum likelihood method according to the best model identified by MEGAX using a bootstrap test with 1,000 replicates. Results showed that the micromorphological evaluation of a leaf cross section depicted a concave arrangement of the central vein, which was more pronounced in the lower section and had a slight protuberance. The micromorphological analysis of the rhizome powder allowed the visualization of a group of cells with variable sizes in the parenchyma and revealed thickened xylematic vessels associated with other elements of the vascular system. Specific amplicons were detected in DNA barcoding for all the barcodes tested except for the trnH-psbA spacer. BLAST analysis revealed that the Smilax species was predominant in all the samples for each barcode; therefore, the genus Smilax was confirmed through DNA barcode analysis. The barcode sequences psbK-psbI, atpF-atpH, and ITS2 had a better resolution at the species level in phylogenetic analysis than the other barcodes we tested.

4.
PeerJ ; 7: e7789, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31616590

RESUMEN

BACKGROUND: Mimusops coriacea (A.DC.) Miq., (Sapotaceae), originated from Africa, were introduced to coastal areas in Ecuador where it is not extensively used as a traditional medicine to treat various human diseases. Different therapeutically uses of the species include: analgesic, antimicrobial, hypoglycemic, inflammation and pain relieve associated with bone and articulation-related diseases. Furthermore, Mimusops coriacea could be used as anti-oxidant agent. However, botanical, chemical or molecular barcode information related to this much used species is not available from Ecuador. In this study, morphological characterization was performed from leaves, stem and seeds. Furthermore, genetic characterization was performed using molecular barcodes for rbcL, matk, ITS1 and ITS2 using DNA extracted from leaves. METHODS: Macro-morphological description was performed on fresh leaves, stem and seeds. For anatomical evaluation, tissues were embedded in paraffin and transversal dissections were done following incubation with sodium hypochlorite and safranin for coloration and fixated later in glycerinated gelatin. DNA extraction was performed using a modified CTAB protocol from leaf tissues, while amplification by PCR was accomplished for the molecular barcodes rbcL, matK, ITS1 and ITS2. Sequence analysis was performed using blast in the GenBank. Phylogenetic analysis was performed with accessions queried in the GenBank belonging to the subfamily Sapotoideae. RESULTS: Leaf size was 13.56 ± 1.46 × 7.49 ± 0.65 cm; where is a macro-morphological description of the stem (see Methods). The peel of the seeds is dark brown. Sequence analysis revealed that amplicons were generated using the four barcodes selected. Phylogenetic analysis indicated that the barcodes rbcL and matK, were not discriminated between species within the same genus of the subfamily Sapotoideae. On the other hand, the ITS1 and ITS2 were discriminative at the level of genus and species of the Sapotoideae.

5.
Data Brief ; 27: 104557, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31656831

RESUMEN

Two subtractive cDNA libraries from banana leaves (cultivar 'Williams', genotype AAA) after biostimulant application on the leaf (library 1) or the substrate (library 2), with Pseudocercospora fijiensis infection were generated. The banana plants were applied first with the biostimulant and later the inoculation of P. fijiensis was performed on the leaves after one week. The suppression subtractive hybridization was performed by using as tester the treatments with biostimulant application by sampling banana leaves after two weeks of P. fijiensis inoculation, and every two weeks for two months (four time points); while the driver were collected on the same dates on independent banana plants that were only inoculated with P. fijiensis (no biostimulant application). The plants were maintained in the greenhouse for the entire assay.

6.
BMC Res Notes ; 10(1): 758, 2017 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-29262852

RESUMEN

OBJECTIVES: In Ecuador, food products need to be labeled if exceeded 0.9% of transgenic content in whole products. For the detection of genetically modified organisms (GMOs), three DNA extraction methods were tested in 35 food products commercialized in Ecuador. Samples with positive amplification of endogenous genes were screened for the presence of the Cauliflower mosaic virus 35S-promoter (P35S) and the nopaline synthase-terminator (Tnos). TaqMan™ probes were used for determination of transgenic content of the GTS 40-3-2 and MON810 events through quantitative PCR (qPCR). RESULTS: Twenty-six processed food samples were positive for the P35S alone and eight samples for the Tnos and P35S. Absolute qPCR results indicated that eleven samples were positive for GTS 40-3-2 specific event and two for MON810 specific event. A total of nine samples for events GTS 40-3-2 and MON810 exceeded the umbral allowed of transgenic content in the whole food product with the specific events. Different food products may require different DNA extraction protocols for GMO detection through PCR. Among the three methods tested, the DNeasy mericon food kit DNA extraction method obtained higher proportion of amplified endogenous genes through PCR. Finally, event-specific GMOs were detected in food products in Ecuador.


Asunto(s)
Productos Agrícolas/genética , ADN de Plantas/análisis , Análisis de Peligros y Puntos de Control Críticos/métodos , Plantas Modificadas Genéticamente/genética , Caulimovirus/genética , Productos Agrícolas/virología , ADN de Plantas/aislamiento & purificación , Ecuador , Contaminación de Alimentos/prevención & control , Etiquetado de Alimentos/métodos , Alimentos Modificados Genéticamente/virología , Regiones Promotoras Genéticas/genética , Zea mays/genética , Zea mays/virología
7.
PLoS One ; 11(8): e0160083, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27487237

RESUMEN

Bananas and plantains are considered an important crop around the world. Banana production is affected by several constraints, of which Black Sigatoka Disease, caused by the fungus Mycosphaerella fijiensis, is considered one of the most important diseases in banana plantations. The banana accession 'Calcutta-4' has a natural resistance to Black Sigatoka; however, the fruit is not valuable for commercialization. Gene identification and expression studies in 'Calcutta-4' might reveal possible gene candidates for resistant to the disease and elucidate mechanisms for resistance. A subtracted cDNA library was generated from leaves after 6, 9 and 12 days inoculated with M. fijiensis conidia on greenhouse banana plants of the accession 'Calcutta-4'. Bioinformatic analysis revealed 99 good quality sequences. Blast2go analysis revealed that 31% of the sequences could not be categorized and, according to the Biological Process Category, 32 and 28 ESTs are related to general metabolic and cellular processes, respectively; while 10 ESTs response to stimulus. Seven sequences were redundant and one was similar to genes that may be involved in pathogen resistance including the putative disease resistance protein RGA1. Genes encoding zinc finger domains were identified and may play an important role in pathogen resistance by inducing the expression of downstream genes. Expression analysis of four selected genes was performed using RT-qPCR during the early stage of the disease development at 6, 9, 12 and 15 days post inoculation showing a peak of up regulation at 9 or 12 days post inoculation. Three of the four genes showed an up-regulation of expression in 'Calcutta-4' when compared to 'Williams' after inoculation with M. fijiensis, suggesting a fine regulation of specific gene candidates that may lead to a resistance response. The genes identified in early responses in a plant-pathogen interaction may be relevant for the resistance response of 'Calcutta-4' to Black Sigatoka. Genes with different functions may play a role in plant response to the disease. The present study suggests a fine up regulation of these genes that might be needed to perform an incompatible interaction. Further gene functional studies need to be performed to validate their use as candidate resistance genes in susceptible banana cultivars.


Asunto(s)
Ascomicetos/inmunología , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas , Musa/genética , Musa/inmunología , Ascomicetos/patogenicidad , Etiquetas de Secuencia Expresada , Perfilación de la Expresión Génica , Biblioteca de Genes , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Esporas Fúngicas/inmunología , Técnicas de Hibridación Sustractiva
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...