Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomolecules ; 14(3)2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38540755

RESUMEN

Neurogenesis is the process of forming new neurons from neural stem cells (NSCs). In adults, this process takes place in specific areas of the brain, known as neurogenic niches. These regions have unique anatomical features that have been studied in animal models and in the human brain; however, there are differences between these models that need to be addressed. The most studied areas are the subventricular zone, the lateral and latero-dorsal walls of the lateral ventricles, and the dentate gyrus of the hippocampus (Hp), which are known as the canonical areas. Other, less-studied niches, such as the hypothalamus, the cerebellum, and the amygdala, are known as non-canonical areas. Anatomy occupies a relevant place in adult neurogenesis, in which the tissue architecture and cellular location are necessities for the interaction and release of diverse molecules that allow this phenomenon. The cell arrangement within the niche and the location of the niche itself are of particular relevance to the state in which the NSCs are found. Consequently, the majority of previous discoveries have been related to pathology. While many studies are based on animal models, discoveries related to neurogenesis in humans have also been made; however, in this case, opinions vary, leading to extensive controversy in recent years. In this review, we address the anatomical characteristics of the different brain regions to better understand their relationships within neurogenesis.


Asunto(s)
Células-Madre Neurales , Neurogénesis , Animales , Adulto , Humanos , Neurogénesis/fisiología , Neuronas , Encéfalo , Hipocampo
2.
Antioxidants (Basel) ; 9(9)2020 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-32859037

RESUMEN

Pregnancy-related disorders, including preeclampsia and gestational diabetes, are characterized by the presence of an adverse intrauterine milieu that may ultimately result in oxidative and nitrosative stress. This scenario may trigger uncontrolled production of reactive oxygen species (ROS) such as superoxide anion (O●-) and reactive nitrogen species (RNS) such as nitric oxide (NO), along with an inactivation of antioxidant systems, which are associated with the occurrence of relevant changes in placental function through recognized redox post-translational modifications in key proteins. The general objective of this study was to assess the impact of a maternal obesogenic enviroment on the regulation of the placental nitroso-redox balance at the end of pregnancy. We measured oxidative damage markers-thiobarbituric acid-reacting substances (TBARS) and carbonyl groups (C=O) levels; nitrosative stress markers-inducible nitric oxide synthase, nitrosothiol groups, and nitrotyrosine residues levels; and the antioxidant biomarkers-catalase and superoxide dismutase (SOD) activity and expression, and total antioxidant capacity (TAC), in full-term placental villous from both pre-pregnancy normal weight and obese women, and with absence of metabolic complications throughout gestation. The results showed a decrease in C=O and TBARS levels in obese pregnancies. Although total SOD and catalase concentrations were shown to be increased, both activities were significantly downregulated in obese pregnancies, along with total antioxidant capacity. Inducible nitric oxide sintase levels were increased in the obese group compared to the lean group, accompanied by an increase in nitrotyrosine residues levels and lower levels of nitrosothiol groups in proteins such as ERK1/2. These findings reveal a reduction in oxidative damage, accompanied by a decline in antioxidant response, and an increase via NO-mediated nitrative stress in placental tissue from metabolically healthy pregnancies with obesity. All this plausibly points to a placental adaptation of the affected antioxidant response towards a NO-induced alternative pathway, through changes in the ROS/RNS balance, in order to reduce oxidative damage and preserve placental function in pregnancy.

3.
Biomed Res Int ; 2018: 5106174, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30402483

RESUMEN

Low birth weight increases neonatal morbidity and mortality, and surviving infants have increased risk of metabolic and cardiovascular disturbances later in life, as well as other neurological, psychiatric, and immune complications. A gestational excess of glucocorticoids (GCs) is a well-known cause for fetal growth retardation, but the biological basis for this association remains elusive. Placental growth is closely related to fetal growth. The placenta is the main regulator of nutrient transport to the fetus, resulting from the difference between placental nutrient uptake and the placenta's own metabolism. The aim of this study was to analyze how excess hydrocortisone affects placental glucose and lipid metabolism. Human placenta explants from term physiological pregnancies were cultured for 18 hours under different hydrocortisone concentrations (2.75, 5.5, and 55 mM; 1, 2, and 20 mg/ml). Placental glucose and lipid uptake and the metabolic partitioning of fatty acids were quantified by isotopic techniques, and expression of specific glucose transporter GLUT1 was quantified by western blot. Cell viability was assessed by MTT, immunohistochemistry and caspase activity. We found that excess hydrocortisone impairs glucose uptake and lipoprotein lipase (LPL) activity, coincident with a GC-dose dependent inhibition of fatty acid oxidation and esterification. None of the experimental conditions showed an increased cell death. In conclusion, our results show that GC overexposure exerts a dysfunctional effect on lipid transport and metabolism and glucose uptake in human placental explants. These findings could well be directly related to a reduced placental growth and possibly to a reduced supply of nutrients to the fetus and the consequent fetal growth retardation and metabolic programming.


Asunto(s)
Hidrocortisona/farmacología , Placenta/metabolismo , Adulto , Apoptosis/efectos de los fármacos , Biomarcadores/metabolismo , Esterificación , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Ácidos Grasos/metabolismo , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Glucosa/metabolismo , Transportador de Glucosa de Tipo 1/metabolismo , Transportador de Glucosa de Tipo 3/genética , Transportador de Glucosa de Tipo 3/metabolismo , Humanos , Recién Nacido , Metabolismo de los Lípidos/efectos de los fármacos , Lipoproteína Lipasa/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Oxidación-Reducción , Fosforilación/efectos de los fármacos , Placenta/enzimología , Embarazo , ARN Mensajero/genética , ARN Mensajero/metabolismo
4.
Oxid Med Cell Longev ; 2017: 5629341, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28400911

RESUMEN

Dysregulation of NO production is implicated in pregnancy-related diseases, including gestational diabetes mellitus (GDM). The role of NO and its placental targets in GDM pregnancies has yet to be determined. S-Nitrosylation is the NO-derived posttranslational protein modification that can modulate biological functions by forming NO-derived complexes with longer half-life, termed S-nitrosothiol (SNO). Our aim was to examine the presence of endogenous S-nitrosylated proteins in cysteine residues in relation to antioxidant defense, apoptosis, and cellular signal transduction in placental tissue from control (n = 8) and GDM (n = 8) pregnancies. S-Nitrosylation was measured using the biotin-switch assay, while the expression and protein activity were assessed by immunoblotting and colorimetric methods, respectively. Results indicated that catalase and peroxiredoxin nitrosylation levels were greater in GDM placentas, and that was accompanied by reduced catalase activity. S-Nitrosylation of ERK1/2 and AKT was increased in GDM placentas, and their activities were inhibited. Activities of caspase-3 and caspase-9 were increased, with the latter also showing diminished nitrosylation levels. These findings suggest that S-nitrosylation is a little-known, but critical, mechanism by which NO directly modulates key placental proteins in women with GDM and, as a consequence, maternal and fetal anomalies during pregnancy can occur.


Asunto(s)
Diabetes Gestacional/patología , Nitratos/química , Óxido Nítrico/química , Adulto , Apoptosis , Índice de Masa Corporal , Estudios de Casos y Controles , Caspasa 3/metabolismo , Caspasa 9/metabolismo , Catalasa/metabolismo , Cesárea , Diabetes Gestacional/metabolismo , Femenino , Humanos , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Nitratos/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Nitrosación , Peroxirredoxinas/metabolismo , Placenta/metabolismo , Embarazo , Proteínas Proto-Oncogénicas c-akt/metabolismo , S-Nitrosotioles/metabolismo , Trofoblastos/citología , Trofoblastos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...