Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38926092

RESUMEN

Radiographic assessment plays a crucial role in the management of patients with central nervous system (CNS) tumors, aiding in treatment planning and evaluation of therapeutic efficacy by quantifying response. Recently, an updated version of the Response Assessment in Neuro-Oncology (RANO) criteria (RANO 2.0) was developed to improve upon prior criteria and provide an updated, standardized framework for assessing treatment response in clinical trials for gliomas in adults. This article provides an overview of significant updates to the criteria including (1) the use of a unified set of criteria for high and low grade gliomas in adults; (2) the use of the post-radiotherapy MRI scan as the baseline for evaluation in newly diagnosed high-grade gliomas; (3) the option for the trial to mandate a confirmation scan to more reliably distinguish pseudoprogression from tumor progression; (4) the option of using volumetric tumor measurements; and (5) the removal of subjective non-enhancing tumor evaluations in predominantly enhancing gliomas (except for specific therapeutic modalities). Step-by-step pragmatic guidance is hereby provided for the neuroradiologist and imaging core lab involved in operationalization and technical execution of RANO 2.0 in clinical trials, including the display of representative cases and in-depth discussion of challenging scenarios.ABBREVIATIONS: BTIP = Brain Tumor Imaging Protocol; CE = Contrast-Enhancing; CNS = Central Nervous System; CR = Complete Response; ECOG = Eastern Cooperative Oncology Group; HGG = High-Grade Glioma; IDH = Isocitrate Dehydrogenase; IRF = Independent Radiologic Facility; LGG = Low-Grade Glioma; KPS = Karnofsky Performance Status; MR = Minor Response; mRANO = Modified RANO; NANO = Neurological Assessment in Neuro-Oncology; ORR = Objective Response Rate; OS = Overall Survival; PD = Progressive Disease; PFS = Progression-Free Survival; PR = Partial Response; PsP = Pseudoprogression; RANO = Response Assessment in Neuro-Oncology; RECIST = Response Evaluation Criteria In Solid Tumors; RT = Radiation Therapy; SD = Stable Disease; Tx = Treatment.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38719607

RESUMEN

BACKGROUND AND PURPOSE: Resting-state functional MRI (rs-fMRI) can be used to estimate functional connectivity (FC) between different brain regions, which may be of value for identifying cognitive impairment in patients with brain tumors. Unfortunately, neither rs-fMRI nor neurocognitive assessments are routinely assessed clinically, mostly due to limitations in examination time and cost. Since DSC perfusion MRI is often used clinically to assess tumor vascularity and similarly uses a gradient-echo-EPI sequence for T2*-sensitivity, we theorized a "pseudo-rs-fMRI" signal could be derived from DSC perfusion to simultaneously quantify FC and perfusion metrics, and these metrics can be used to estimate cognitive impairment in patients with brain tumors. MATERIALS AND METHODS: Twenty-four consecutive patients with gliomas were enrolled in a prospective study that included DSC perfusion MRI, resting-sate functional MRI (rs-fMRI), and neurocognitive assessment. Voxelwise modeling of contrast bolus dynamics during DSC acquisition was performed and then subtracted from the original signal to generate a residual "pseudo-rs-fMRI" signal. Following the preprocessing of pseudo-rs-fMRI, full rs-fMRI, and a truncated version of the full rs-fMRI (first 100 timepoints) data, the default mode, motor, and language network maps were generated with atlas-based ROIs, Dice scores were calculated for the resting-state network maps from pseudo-rs-fMRI and truncated rs-fMRI using the full rs-fMRI maps as reference. Seed-to-voxel and ROI-to-ROI analyses were performed to assess FC differences between cognitively impaired and nonimpaired patients. RESULTS: Dice scores for the group-level and patient-level (mean±SD) default mode, motor, and language network maps using pseudo-rs-fMRI were 0.905/0.689 ± 0.118 (group/patient), 0.973/0.730 ± 0.124, and 0.935/0.665 ± 0.142, respectively. There was no significant difference in Dice scores between pseudo-rs-fMRI and the truncated rs-fMRI default mode (P = .97) or language networks (P = .30), but there was a difference in motor networks (P = .02). A multiple logistic regression classifier applied to ROI-to-ROI FC networks using pseudo-rs-fMRI could identify cognitively impaired patients (sensitivity = 84.6%, specificity = 63.6%, receiver operating characteristic area under the curve (AUC) = 0.7762 ± 0.0954 (standard error), P = .0221) and performance was not significantly different from full rs-fMRI predictions (AUC = 0.8881 ± 0.0733 (standard error), P = .0013, P = .29 compared with pseudo-rs-fMRI). CONCLUSIONS: DSC perfusion MRI-derived pseudo-rs-fMRI data can be used to perform typical rs-fMRI FC analyses that may identify cognitive decline in patients with brain tumors while still simultaneously performing perfusion analyses.

3.
Neuro Oncol ; 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38808755

RESUMEN

Typical longitudinal radiographic assessment of brain tumors relies on side-by-side qualitative visualization of serial magnetic resonance images (MRIs) aided by quantitative measurements of tumor size. However, when assessing slowly-growing tumors and/or complex tumors, side-by-side visualization and quantification may be difficult or unreliable. Whole-brain, patient-specific "digital flipbooks" of longitudinal scans are a potential method to augment radiographic side-by-side reads in clinical settings by enhancing the visual perception of changes in tumor size, mass effect, and infiltration across multiple slices over time. In this approach, co-registered, consecutive MRI scans are displayed in a slide deck, where one slide displays multiple brain slices of a single timepoint in an array (e.g. 3x5 "mosaic" view of slices). The flipbooks are viewed similar to an animated flipbook of cartoons/photos so that subtle radiographic changes are visualized via perceived motion when scrolling through the slides. Importantly, flipbooks can be created easily with free, open-source software. This article describes the step-by-step methodology for creating flipbooks and discusses clinical scenarios for which flipbooks are particularly useful. Example flipbooks are provided in the Online Supplemental Material.

4.
Neuroradiology ; 66(5): 653-675, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38507081

RESUMEN

Autoimmune encephalitis is a relatively novel nosological entity characterized by an immune-mediated damage of the central nervous system. While originally described as a paraneoplastic inflammatory phenomenon affecting limbic structures, numerous instances of non-paraneoplastic pathogenesis, as well as extra-limbic involvement, have been characterized. Given the wide spectrum of insidious clinical presentations ranging from cognitive impairment to psychiatric symptoms or seizures, it is crucial to raise awareness about this disease category. In fact, an early diagnosis can be dramatically beneficial for the prognosis both to achieve an early therapeutic intervention and to detect a potential underlying malignancy. In this scenario, the radiologist can be the first to pose the hypothesis of autoimmune encephalitis and refer the patient to a comprehensive diagnostic work-up - including clinical, serological, and neurophysiological assessments.In this article, we illustrate the main radiological characteristics of autoimmune encephalitis and its subtypes, including the typical limbic presentation, the features of extra-limbic involvement, and also peculiar imaging findings. In addition, we review the most relevant alternative diagnoses that should be considered, ranging from other encephalitides to neoplasms, vascular conditions, and post-seizure alterations. Finally, we discuss the most appropriate imaging diagnostic work-up, also proposing a suggested MRI protocol.


Asunto(s)
Enfermedades Autoinmunes del Sistema Nervioso , Encefalitis , Enfermedad de Hashimoto , Encefalitis Límbica , Humanos , Encefalitis/diagnóstico por imagen , Enfermedad de Hashimoto/diagnóstico por imagen , Autoanticuerpos , Convulsiones , Radiólogos , Encefalitis Límbica/diagnóstico por imagen
5.
AJNR Am J Neuroradiol ; 45(2): 188-197, 2024 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-38238098

RESUMEN

BACKGROUND AND PURPOSE: The T2-FLAIR mismatch sign on MR imaging is a highly specific imaging biomarker of isocitrate dehydrogenase (IDH)-mutant astrocytomas, which lack 1p/19q codeletion. However, most studies using the T2-FLAIR mismatch sign have used visual assessment. This study quantified the degree of T2-FLAIR mismatch using digital subtraction of fluid-nulled T2-weighted FLAIR images from non-fluid-nulled T2-weighted images in human nonenhancing diffuse gliomas and then used this information to assess improvements in diagnostic performance and investigate subregion characteristics within these lesions. MATERIALS AND METHODS: Two cohorts of treatment-naïve, nonenhancing gliomas with known IDH and 1p/19q status were studied (n = 71 from The Cancer Imaging Archive (TCIA) and n = 34 in the institutional cohort). 3D volumes of interest corresponding to the tumor were segmented, and digital subtraction maps of T2-weighted MR imaging minus T2-weighted FLAIR MR imaging were used to partition each volume of interest into a T2-FLAIR mismatched subregion (T2-FLAIR mismatch, corresponding to voxels with positive values on the subtraction maps) and nonmismatched subregion (T2-FLAIR nonmismatch corresponding to voxels with negative values on the subtraction maps). Tumor subregion volumes, percentage of T2-FLAIR mismatch volume, and T2-FLAIR nonmismatch subregion thickness were calculated, and 2 radiologists assessed the T2-FLAIR mismatch sign with and without the aid of T2-FLAIR subtraction maps. RESULTS: Thresholds of ≥42% T2-FLAIR mismatch volume classified IDH-mutant astrocytoma with a specificity/sensitivity of 100%/19.6% (TCIA) and 100%/31.6% (institutional); ≥25% T2-FLAIR mismatch volume showed 92.0%/32.6% and 100%/63.2% specificity/sensitivity, and ≥15% T2-FLAIR mismatch volume showed 88.0%/39.1% and 93.3%/79.0% specificity/sensitivity. In IDH-mutant astrocytomas with ≥15% T2-FLAIR mismatch volume, T2-FLAIR nonmismatch subregion thickness was negatively correlated with the percentage T2-FLAIR mismatch volume (P < .0001) across both cohorts. The percentage T2-FLAIR mismatch volume was higher in grades 3-4 compared with grade 2 IDH-mutant astrocytomas (P < .05), and ≥15% T2-FLAIR mismatch volume IDH-mutant astrocytomas were significantly larger than <15% T2-FLAIR mismatch volume IDH-mutant astrocytoma (P < .05) across both cohorts. When evaluated by 2 radiologists, the additional use of T2-FLAIR subtraction maps did not show a significant difference in interreader agreement, sensitivity, or specificity compared with a separate evaluation of T2-FLAIR and T2-weighted MR imaging alone. CONCLUSIONS: T2-FLAIR digital subtraction maps may be a useful, automated tool to obtain objective segmentations of tumor subregions based on quantitative thresholds for classifying IDH-mutant astrocytomas using the percentage T2 FLAIR mismatch volume with 100% specificity and exploring T2-FLAIR mismatch/T2-FLAIR nonmismatch subregion characteristics. Conversely, the addition of T2-FLAIR subtraction maps did not enhance the sensitivity or specificity of the visual T2-FLAIR mismatch sign assessment by experienced radiologists.


Asunto(s)
Astrocitoma , Neoplasias Encefálicas , Glioma , Humanos , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Estudios Retrospectivos , Glioma/diagnóstico por imagen , Glioma/patología , Imagen por Resonancia Magnética/métodos , Isocitrato Deshidrogenasa/genética , Mutación
6.
J Neurosurg ; 140(2): 338-349, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37542437

RESUMEN

OBJECTIVE: The objective of this study was to identify baseline clinical and radiological characteristics of brain metastases (BMs) associated with a higher probability of lesion-specific progression-free survival (PFS-L) after laser interstitial thermal therapy (LITT). METHODS: A total of 47 lesions in 42 patients with BMs treated with LITT were retrospectively examined, including newly diagnosed BM, suspected recurrent BM, and suspected radiation necrosis. The association of baseline clinical and radiological features with PFS-L was assessed using survival analyses. Radiological features included lesion size measurements, diffusion and perfusion metrics, and sphericity, which is a radiomic feature ranging from 1 (perfect sphere) to 0. RESULTS: The probability of PFS-L for the entire cohort was 88.0% at 3 months, 70.6% at 6 months, 67.4% at 1 and 2 years, and 62.2% at 3 years. For lesions progressing after LITT (n = 13), the median time to progression was 3.9 months, and most lesions (n = 11) progressed within 6 months after LITT. In lesions showing response to LITT (n = 17), the median time to response was 12.1 months. All 3 newly diagnosed BMs showed a long-term response. The mean (± SD) follow-up duration for all censored lesions (n = 34) was 20.7 ± 19.4 months (range 12 days to 6.1 years). The mean pretreatment enhancing volume was 2.68 cm3 and the mean sphericity was 0.70. Pretreatment small enhancing volume (p = 0.003) and high sphericity (p = 0.024) computed from lesion segmentation predicted a longer PFS-L after LITT. Lesions meeting optimal cutoffs of either enhancing volume < 2.5 cm3 (adjusted p = 0.004) or sphericity ≥ 0.705 (adjusted p = 0.019) had longer PFS-L, and their probability of PFS-L was 86.8% at 3 years. Lesions meeting both cutoffs showed a cumulative benefit (p < 0.0001), with a 100% probability of PFS-L at 3 years, which was unchanged at the end of follow-up (4.1 years). Manually computed estimates of lesion size (maximal axial diameter, p = 0.011) and sphericity (p = 0.043) were also predictors of PFS-L. Optimal cutoffs of diameter < 2 cm (adjusted p = 0.035) or manual sphericity ≥ 0.91 (adjusted p = 0.092) identified lesions with longer PFS-L, and lesions meeting both cutoffs showed a cumulative benefit (p = 0.0023). Baseline diffusion imaging did not predict PFS-L. A subset of lesions (n = 7) with highly perfused hotspots had worse PFS-L (adjusted p = 0.010), but perfusion signal contamination from vessels and cortex and underlying size differences were possible confounders. CONCLUSIONS: Small size and high sphericity are ideal baseline features for lesions considered for LITT treatment, with a cumulative PFS-L benefit when both features are present, that could aid patient selection.


Asunto(s)
Neoplasias Encefálicas , Terapia por Láser , Humanos , Terapia por Láser/métodos , Estudios Retrospectivos , Pronóstico , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/patología , Rayos Láser
7.
Neuro Oncol ; 26(1): 115-126, 2024 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-37591790

RESUMEN

BACKGROUND: Given the invasive nature of glioblastoma, tumor cells exist beyond the contrast-enhancing (CE) region targeted during treatment. However, areas of non-enhancing (NE) tumors are difficult to visualize and delineate from edematous tissue. Amine chemical exchange saturation transfer echo planar imaging (CEST-EPI) is a pH-sensitive molecular magnetic resonance imaging technique that was evaluated in its ability to identify infiltrating NE tumors and prognosticate survival. METHODS: In this prospective study, CEST-EPI was obtained in 30 patients and areas with elevated CEST contrast ("CEST+" based on the asymmetry in magnetization transfer ratio: MTRasym at 3 ppm) within NE regions were quantitated. Median MTRasym at 3 ppm and volume of CEST + NE regions were correlated with progression-free survival (PFS). In 20 samples from 14 patients, image-guided biopsies of these areas were obtained to correlate MTRasym at 3 ppm to tumor and non-tumor cell burden using immunohistochemistry. RESULTS: In 15 newly diagnosed and 15 recurrent glioblastoma, higher median MTRasym at 3ppm within CEST + NE regions (P = .007; P = .0326) and higher volumes of CEST + NE tumor (P = .020; P < .001) were associated with decreased PFS. CE recurrence occurred in areas of preoperative CEST + NE regions in 95.4% of patients. MTRasym at 3 ppm was correlated with presence of tumor, cell density, %Ki-67 positivity, and %CD31 positivity (P = .001; P < .001; P < .001; P = .001). CONCLUSIONS: pH-weighted amine CEST-EPI allows for visualization of NE tumor, likely through surrounding acidification of the tumor microenvironment. The magnitude and volume of CEST + NE tumor correlates with tumor cell density, degree of proliferating or "active" tumor, and PFS.


Asunto(s)
Imagen Eco-Planar , Glioblastoma , Humanos , Imagen Eco-Planar/métodos , Glioblastoma/patología , Aminas/química , Estudios Prospectivos , Imagen por Resonancia Magnética/métodos , Concentración de Iones de Hidrógeno , Microambiente Tumoral
8.
Front Radiol ; 3: 1267615, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38152383

RESUMEN

Standardized MRI acquisition protocols are crucial for reducing the measurement and interpretation variability associated with response assessment in brain tumor clinical trials. The main challenge is that standardized protocols should ensure high image quality while maximizing the number of institutions meeting the acquisition requirements. In recent years, extensive effort has been made by consensus groups to propose different "ideal" and "minimum requirements" brain tumor imaging protocols (BTIPs) for gliomas, brain metastases (BM), and primary central nervous system lymphomas (PCSNL). In clinical practice, BTIPs for clinical trials can be easily integrated with additional MRI sequences that may be desired for clinical patient management at individual sites. In this review, we summarize the general concepts behind the choice and timing of sequences included in the current recommended BTIPs, we provide a comparative overview, and discuss tips and caveats to integrate additional clinical or research sequences while preserving the recommended BTIPs. Finally, we also reflect on potential future directions for brain tumor imaging in clinical trials.

9.
Eur Radiol ; 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37882836

RESUMEN

OBJECTIVE: To determine the feasibility and biologic correlations of dynamic susceptibility contrast (DSC), dynamic contrast enhanced (DCE), and quantitative maps derived from contrast leakage effects obtained simultaneously in gliomas using dynamic spin-and-gradient-echo echoplanar imaging (dynamic SAGE-EPI) during a single contrast injection. MATERIALS AND METHODS: Thirty-eight patients with enhancing brain gliomas were prospectively imaged with dynamic SAGE-EPI, which was processed to compute traditional DSC metrics (normalized relative cerebral blood flow [nrCBV], percentage of signal recovery [PSR]), DCE metrics (volume transfer constant [Ktrans], extravascular compartment [ve]), and leakage effect metrics: ΔR2,ss* (reflecting T2*-leakage effects), ΔR1,ss (reflecting T1-leakage effects), and the transverse relaxivity at tracer equilibrium (TRATE, reflecting the balance between ΔR2,ss* and ΔR1,ss). These metrics were compared between patient subgroups (treatment-naïve [TN] vs recurrent [R]) and biological features (IDH status, Ki67 expression). RESULTS: In IDH wild-type gliomas (IDHwt-i.e., glioblastomas), previous exposure to treatment determined lower TRATE (p = 0.002), as well as higher PSR (p = 0.006), Ktrans (p = 0.17), ΔR1,ss (p = 0.035), ve (p = 0.006), and ADC (p = 0.016). In IDH-mutant gliomas (IDHm), previous treatment determined higher Ktrans and ΔR1,ss (p = 0.026). In TN-gliomas, dynamic SAGE-EPI metrics tended to be influenced by IDH status (p ranging 0.09-0.14). TRATE values above 142 mM-1s-1 were exclusively seen in TN-IDHwt, and, in TN-gliomas, this cutoff had 89% sensitivity and 80% specificity as a predictor of Ki67 > 10%. CONCLUSIONS: Dynamic SAGE-EPI enables simultaneous quantification of brain tumor perfusion and permeability, as well as mapping of novel metrics related to cytoarchitecture (TRATE) and blood-brain barrier disruption (ΔR1,ss), with a single contrast injection. CLINICAL RELEVANCE STATEMENT: Simultaneous DSC and DCE analysis with dynamic SAGE-EPI reduces scanning time and contrast dose, respectively alleviating concerns about imaging protocol length and gadolinium adverse effects and accumulation, while providing novel leakage effect metrics reflecting blood-brain barrier disruption and tumor tissue cytoarchitecture. KEY POINTS: • Traditionally, perfusion and permeability imaging for brain tumors requires two separate contrast injections and acquisitions. • Dynamic spin-and-gradient-echo echoplanar imaging enables simultaneous perfusion and permeability imaging. • Dynamic spin-and-gradient-echo echoplanar imaging provides new image contrasts reflecting blood-brain barrier disruption and cytoarchitecture characteristics.

10.
Clin Cancer Res ; 29(20): 4186-4195, 2023 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-37540556

RESUMEN

PURPOSE: Antiangiogenic therapies are known to cause high radiographic response rates due to reduction in vascular permeability resulting in a lower degree of contrast extravasation. In this study, we investigate the prognostic ability for model-derived parameters describing enhancing tumor volumetric dynamics to predict survival in recurrent glioblastoma treated with antiangiogenic therapy. EXPERIMENTAL DESIGN: N = 276 patients in two phase II trials were used as training data, including bevacizumab ± irinotecan (NCT00345163) and cabozantinib (NCT00704288), and N = 74 patients in the bevacizumab arm of a phase III trial (NCT02511405) were used for validation. Enhancing volumes were estimated using T1 subtraction maps, and a biexponential model was used to estimate regrowth (g) and regression (d) rates, time to tumor regrowth (TTG), and the depth of response (DpR). Response characteristics were compared to diffusion MR phenotypes previously shown to predict survival. RESULTS: Optimized thresholds occurred at g = 0.07 months-1 (phase II: HR = 0.2579, P = 5 × 10-20; phase III: HR = 0.2197, P = 5 × 10-5); d = 0.11 months-1 (HR = 0.3365, P < 0.0001; HR = 0.3675, P = 0.0113); TTG = 3.8 months (HR = 0.2702, P = 6 × 10-17; HR = 0.2061, P = 2 × 10-5); and DpR = 11.3% (HR = 0.6326, P = 0.0028; HR = 0.4785, P = 0.0206). Multivariable Cox regression controlling for age and baseline tumor volume confirmed these factors as significant predictors of survival. Patients with a favorable pretreatment diffusion MRI phenotype had a significantly longer TTG and slower regrowth. CONCLUSIONS: Recurrent glioblastoma patients with a large, durable radiographic response to antiangiogenic agents have significantly longer survival. This information is useful for interpreting activity of antiangiogenic agents in recurrent glioblastoma.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/diagnóstico por imagen , Glioblastoma/tratamiento farmacológico , Bevacizumab/uso terapéutico , Inhibidores de la Angiogénesis/uso terapéutico , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/tratamiento farmacológico , Recurrencia Local de Neoplasia/diagnóstico por imagen , Recurrencia Local de Neoplasia/tratamiento farmacológico , Irinotecán/uso terapéutico , Imagen por Resonancia Magnética/métodos
11.
J Neurooncol ; 163(2): 417-427, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37294422

RESUMEN

PURPOSE: There is limited knowledge about the associations between sodium and proton MRI measurements in brain tumors. The purpose of this study was to quantify intra- and intertumoral correlations between sodium, diffusion, and perfusion MRI in human gliomas. METHODS: Twenty glioma patients were prospectively studied on a 3T MRI system with multinuclear capabilities. Three mutually exclusive tumor volumes of interest (VOIs) were segmented: contrast-enhancing tumor (CET), T2/FLAIR hyperintense non-enhancing tumor (NET), and necrosis. Median and voxel-wise associations between apparent diffusion coefficient (ADC), normalized relative cerebral blood volume (nrCBV), and normalized sodium measurements were quantified for each VOI. RESULTS: Both relative sodium concentration and ADC were significantly higher in areas of necrosis compared to NET (P = 0.003 and P = 0.008, respectively) and CET (P = 0.02 and P = 0.02). Sodium concentration was higher in CET compared to NET (P = 0.04). Sodium and ADC were higher in treated compared to treatment-naïve gliomas within NET (P = 0.006 and P = 0.01, respectively), and ADC was elevated in CET (P = 0.03). Median ADC and sodium concentration were positively correlated across patients in NET (r = 0.77, P < 0.0001) and CET (r = 0.84, P < 0.0001), but not in areas of necrosis (r = 0.45, P = 0.12). Median nrCBV and sodium concentration were negatively correlated across patients in areas of NET (r=-0.63, P = 0.003). Similar associations were observed when examining voxel-wise correlations within VOIs. CONCLUSION: Sodium MRI is positively correlated with proton diffusion MRI measurements in gliomas, likely reflecting extracellular water. Unique areas of multinuclear MRI contrast may be useful in future studies to understand the chemistry of the tumor microenvironment.


Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Protones , Imagen por Resonancia Magnética , Glioma/diagnóstico por imagen , Glioma/patología , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/patología , Imagen de Difusión por Resonancia Magnética , Perfusión , Necrosis , Microambiente Tumoral
13.
Tomography ; 9(1): 315-327, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36828377

RESUMEN

Patients with degenerative cervical myelopathy (DCM) undergo adaptive supraspinal changes. However, it remains unknown how subcortical white matter changes reflect the gray matter loss. The current study investigated the interrelationship between gray matter and subcortical white matter alterations in DCM patients. Cortical thickness of gray matter, as well as the intra-cellular volume fraction (ICVF) of subcortical whiter matter, were assessed in a cohort of 44 patients and 17 healthy controls (HCs). The results demonstrated that cortical thinning of sensorimotor and pain related regions is associated with more severe DCM symptoms. ICVF values of subcortical white matter underlying the identified regions were significantly lower in study patients than in HCs. The left precentral gyrus (r = 0.5715, p < 0.0001), the left supramarginal gyrus (r = 0.3847, p = 0.0099), the left postcentral gyrus (r = 0.5195, p = 0.0003), the right superior frontal gyrus (r = 0.3266, p = 0.0305), and the right caudal (r = 0.4749, p = 0.0011) and rostral anterior cingulate (r = 0.3927, p = 0.0084) demonstrated positive correlations between ICVF and cortical thickness in study patients, but no significant correlations between ICVF and cortical thickness were observed in HCs. Results from the current study suggest that DCM may cause widespread gray matter alterations and underlying subcortical neurite loss, which may serve as potential imaging biomarkers reflecting the pathology of DCM.


Asunto(s)
Enfermedades de la Médula Espinal , Sustancia Blanca , Humanos , Imagen por Resonancia Magnética/métodos , Sustancia Gris/patología , Enfermedades de la Médula Espinal/patología
14.
Neuroradiology ; 65(3): 559-568, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36301349

RESUMEN

PURPOSE: There remains no consensus normal-appearing white matter (NAWM) normalization method to compute normalized relative cerebral blood volume (nrCBV) and apparent diffusion coefficient (nADC) in brain tumors. This reader study explored nrCBV and nADC differences using different NAWM normalization methods. METHODS: Thirty-five newly diagnosed glioma patients were studied. For each patient, two readers created four NAWM regions of interests: (1) a single plane in the centrum semiovale (CSOp), (2) 3 spheres in the centrum semiovale (CSOs), (3) a single plane in the slice of the tumor center (TUMp), and (4) 3 spheres in the slice of the tumor center (TUMs). Readers repeated NAWM segmentations 1 month later. Differences in nrCBV and nADC of the FLAIR hyperintense tumor, inter-/intra-reader variability, and time to segment NAWM were assessed. As a validation step, the diagnostic performance of each method for IDH-status prediction was evaluated. RESULTS: Both readers obtained significantly different nrCBV (P < .001), nADC (P < .001), and time to segment NAWM (P < .001) between the four normalization methods. nrCBV and nADC were significantly different between CSO and TUM methods, but not between planar and spherical methods in the same NAWM region. Broadly, CSO methods were quicker than TUM methods, and spherical methods were quicker than planar methods. For all normalization techniques, inter-reader reproducibility and intra-reader repeatability were excellent (intraclass correlation coefficient > 0.9), and the IDH-status predictive performance remained similar. CONCLUSION: The selected NAWM region significantly impacts nrCBV and nADC values. CSO methods, particularly CSOs, may be preferred because of time reduction, similar reader variability, and similar diagnostic performance compared to TUM methods.


Asunto(s)
Neoplasias Encefálicas , Sustancia Blanca , Humanos , Sustancia Blanca/patología , Reproducibilidad de los Resultados , Imagen de Difusión por Resonancia Magnética/métodos , Neoplasias Encefálicas/patología , Perfusión , Encéfalo/patología , Imagen por Resonancia Magnética/métodos
15.
Neurooncol Adv ; 4(1): vdac124, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36033919

RESUMEN

Background: Inhibition of the isocitrate dehydrogenase (IDH)-mutant enzyme is a novel therapeutic target in IDH-mutant gliomas. Imaging biomarkers of IDH inhibitor treatment efficacy in human IDH-mutant gliomas are largely unknown. This study investigated early volumetric, perfusion, and diffusion MRI changes in IDH1-mutant gliomas during IDH inhibitor treatment. Methods: Twenty-nine IDH1-mutant glioma patients who received IDH inhibitor and obtained anatomical, perfusion, and diffusion MRI pretreatment at 3-6 weeks (n = 23) and/or 2-4 months (n = 14) of treatment were retrospectively studied. Normalized relative cerebral blood volume (nrCBV), apparent diffusion coefficient (ADC), and fluid-attenuated inversion recovery (FLAIR) hyperintensity volume were analyzed. Results: After 3-6 weeks of treatment, nrCBV was significantly increased (P = .004; mean %change = 24.15%) but not FLAIR volume (P = .23; mean %change = 11.05%) or ADC (P = .52; mean %change = -1.77%). Associations between shorter progression-free survival (PFS) with posttreatment nrCBV > 1.55 (P = .05; median PFS, 240 vs 55 days) and increased FLAIR volume > 4 cm3 (P = .06; 227 vs 29 days) trended toward significance. After 2-4 months, nrCBV, FLAIR volume, and ADC were not significantly different from baseline, but an nrCBV increase > 0% (P = .002; 1121 vs 257 days), posttreatment nrCBV > 1.8 (P = .01; 1121 vs. 270 days), posttreatment ADC < 1.15 µm2/ms (P = .02; 421 vs 215 days), median nrCBV/ADC ratio increase > 0% (P = .02; 1121 vs 270 days), and FLAIR volume change > 4 cm3 (P = .03; 421 vs 226.5 days) were associated with shorter PFS. Conclusions: Increased nrCBV at 3-6 weeks of treatment may reflect transient therapeutic and/or tumor growth changes, whereas nrCBV, ADC, and FLAIR volume changes occurring at 2-4 months of treatment may more accurately reflect antitumor response to IDH inhibition.

16.
Brain Imaging Behav ; 16(6): 2569-2585, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35908147

RESUMEN

Task-based functional MRI (tb-fMRI) represents an extremely valuable approach for the identification of language eloquent regions for presurgical mapping in patients with brain tumors. However, its routinely application is limited by patient-related factors, such as cognitive disability and difficulty in coping with long-time acquisitions, and by technical factors, such as lack of equipment availability for stimuli delivery. Resting-state fMRI (rs-fMRI) instead, allows the identification of distinct language networks in a 10-min acquisition without the need of performing active tasks and using specific equipment. Therefore, to test the feasibility of rs-fMRI as a preoperative mapping tool, we reconstructed a lexico-semantic intrinsic connectivity network (ICN) in healthy controls (HC) and in a case series of patients with gliomas and compared the organization of this language network with the one derived from tb-fMRI in the patient's group. We studied three patients with extra-frontal gliomas who underwent functional mapping with auditory verb-generation (AVG) task and rs-fMRI with a seed in the left inferior frontal gyrus (IFG). First, we identified the functional connected areas to the IFG in HC. We qualitatively compared these areas with those that showed functional activation in AVG task derived from Neurosynth meta-analysis. Last, in each patient we performed single-subject analyses both for rs- and tb-fMRI, and we evaluated the spatial overlap between the two approaches. In HC, the IFG-ICN network showed a predominant left fronto-temporal functional connectivity in regions overlapping with the AVG network derived from a meta-analysis. In two patients, rs- and tb-fMRI showed comparable patterns of activation in left fronto-temporal regions, with different levels of contralateral activations. The third patient could not accomplish the AVG task and thus it was not possible to make any comparison with the ICN. However, in this patient, task-free approach disclosed a consistent network of fronto-temporal regions as in HC, and additional parietal regions. Our preliminary findings support the value of rs-fMRI approach for presurgical mapping, particularly for identifying left fronto-temporal core language-related areas in glioma patients. In a preoperative setting, rs-fMRI approach could represent a powerful tool for the identification of eloquent language areas, especially in patients with language or cognitive impairments.


Asunto(s)
Glioma , Imagen por Resonancia Magnética , Humanos , Lenguaje , Mapeo Encefálico , Glioma/diagnóstico por imagen , Glioma/cirugía , Corteza Prefrontal
17.
MAGMA ; 35(3): 349-363, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34643853

RESUMEN

OBJECTIVE: Evaluating the impact of the Inversion Time (TI) on regional perfusion estimation in a pediatric cohort using Arterial Spin Labeling (ASL). MATERIALS AND METHODS: Pulsed ASL (PASL) was acquired at 3 T both at TI 1500 ms and 2020 ms from twelve MRI-negative patients (age range 9-17 years). A volume of interest (VOIs) and a voxel-wise approach were employed to evaluate subject-specific TI-dependent Cerebral Blood Flow (CBF) differences, and grey matter CBF Z-score differences. A visual evaluation was also performed. RESULTS: CBF was higher for TI 1500 ms in the proximal territories of the arteries (PTAs) (e.g. insular cortex and basal ganglia ï»¿- P < 0.01 and P < 0.05 from the VOI analysis, respectively), and for TI 2020 ms in the distal territories of the arteries (DTAs), including the watershed areas (e.g. posterior parietal and occipital cortex - P < 0.001 and P < 0.01 from the VOI analysis, respectively). Similar differences were also evident when analyzing patient-specific CBF Z-scores and at a visual inspection. CONCLUSIONS: TI influences ASL perfusion estimates with a region-dependent effect. The presence of intraluminal arterial signal in PTAs and the longer arterial transit time in the DTAs (including watershed areas) may account for the TI-dependent differences. Watershed areas exhibiting a lower perfusion signal at short TIs (~ 1500 ms) should not be misinterpreted as focal hypoperfused areas.


Asunto(s)
Arterias , Circulación Cerebrovascular , Adolescente , Encéfalo/irrigación sanguínea , Encéfalo/diagnóstico por imagen , Circulación Cerebrovascular/fisiología , Niño , Humanos , Imagen por Resonancia Magnética/métodos , Perfusión , Marcadores de Spin
19.
Radiology ; 299(2): 313-323, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33687284

RESUMEN

Background Missing MRI sequences represent an obstacle in the development and use of deep learning (DL) models that require multiple inputs. Purpose To determine if synthesizing brain MRI scans using generative adversarial networks (GANs) allows for the use of a DL model for brain lesion segmentation that requires T1-weighted images, postcontrast T1-weighted images, fluid-attenuated inversion recovery (FLAIR) images, and T2-weighted images. Materials and Methods In this retrospective study, brain MRI scans obtained between 2011 and 2019 were collected, and scenarios were simulated in which the T1-weighted images and FLAIR images were missing. Two GANs were trained, validated, and tested using 210 glioblastomas (GBMs) (Multimodal Brain Tumor Image Segmentation Benchmark [BRATS] 2017) to generate T1-weighted images from postcontrast T1-weighted images and FLAIR images from T2-weighted images. The quality of the generated images was evaluated with mean squared error (MSE) and the structural similarity index (SSI). The segmentations obtained with the generated scans were compared with those obtained with the original MRI scans using the dice similarity coefficient (DSC). The GANs were validated on sets of GBMs and central nervous system lymphomas from the authors' institution to assess their generalizability. Statistical analysis was performed using the Mann-Whitney, Friedman, and Dunn tests. Results Two hundred ten GBMs from the BRATS data set and 46 GBMs (mean patient age, 58 years ± 11 [standard deviation]; 27 men [59%] and 19 women [41%]) and 21 central nervous system lymphomas (mean patient age, 67 years ± 13; 12 men [57%] and nine women [43%]) from the authors' institution were evaluated. The median MSE for the generated T1-weighted images ranged from 0.005 to 0.013, and the median MSE for the generated FLAIR images ranged from 0.004 to 0.103. The median SSI ranged from 0.82 to 0.92 for the generated T1-weighted images and from 0.76 to 0.92 for the generated FLAIR images. The median DSCs for the segmentation of the whole lesion, the FLAIR hyperintensities, and the contrast-enhanced areas using the generated scans were 0.82, 0.71, and 0.92, respectively, when replacing both T1-weighted and FLAIR images; 0.84, 0.74, and 0.97 when replacing only the FLAIR images; and 0.97, 0.95, and 0.92 when replacing only the T1-weighted images. Conclusion Brain MRI scans generated using generative adversarial networks can be used as deep learning model inputs in case MRI sequences are missing. © RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Zhong in this issue. An earlier incorrect version of this article appeared online. This article was corrected on April 12, 2021.


Asunto(s)
Neoplasias Encefálicas/diagnóstico por imagen , Aprendizaje Profundo , Glioblastoma/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Linfoma/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Anciano , Medios de Contraste , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos
20.
Cancers (Basel) ; 13(3)2021 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-33498680

RESUMEN

In recent years, the clinical assessment of primary brain tumors has been increasingly dependent on advanced magnetic resonance imaging (MRI) techniques in order to infer tumor pathophysiological characteristics, such as hemodynamics, metabolism, and microstructure. Quantitative radiomic data extracted from advanced MRI have risen as potential in vivo noninvasive biomarkers for predicting tumor grades and molecular subtypes, opening the era of "molecular imaging" and radiogenomics. This review presents the most relevant advancements in quantitative neuroimaging of advanced MRI techniques, by means of radiomics analysis, applied to primary brain tumors, including lower-grade glioma and glioblastoma, with a special focus on peculiar oncologic entities of current interest. Novel findings from diffusion MRI (dMRI), perfusion-weighted imaging (PWI), and MR spectroscopy (MRS) are hereby sifted in order to evaluate the role of quantitative imaging in neuro-oncology as a tool for predicting molecular profiles, stratifying prognosis, and characterizing tumor tissue microenvironments. Furthermore, innovative technological approaches are briefly addressed, including artificial intelligence contributions and ultra-high-field imaging new techniques. Lastly, after providing an overview of the advancements, we illustrate current clinical applications and future perspectives.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...