Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Am J Physiol Cell Physiol ; 323(5): C1393-C1401, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36121132

RESUMEN

Atherosclerosis-related cardiovascular diseases are a leading cause of mortality worldwide. Vascular smooth muscle cells (VSMCs) comprise the medial layer of the arterial wall and undergo phenotypic switching during atherosclerosis to a synthetic phenotype capable of proliferation and migration. The surrounding environment undergoes alterations in extracellular matrix (ECM) stiffness and composition and an increase in cholesterol content. Using an atherosclerotic murine model, we analyzed how the mechanics of VSMCs isolated from Western diet-fed apolipoprotein-E knockout (ApoE-/-) and wild-type (WT) mice were altered during atherosclerosis. Increased stiffness of ApoE-/- VSMCs correlated with a greater degree of stress fiber alignment, as evidenced by atomic force microscopy (AFM)-generated force maps and stress fiber topography images. On type-1 collagen (COL1)-coated polyacrylamide (PA) gels (referred to as substrate) of varying stiffness, ApoE-/- VSMCs had lower adhesion forces to COL1 and N-cadherin (N-Cad) compared with WT cells. ApoE-/- VSMC stiffness was significantly greater than that of WT cells. Cell stiffness increased with increasing substrate stiffness for both ApoE-/- and WT VSMCs. In addition, ApoE-/- VSMCs showed an enhanced migration capability on COL1-coated substrates and a general decreasing trend in migration capacity with increasing substrate stiffness, correlating with lowered adhesion forces as compared with WT VSMCs. Altogether, these results demonstrate the potential contribution of the alteration in VSMC mechanics in the development of atherosclerosis.


Asunto(s)
Aterosclerosis , Músculo Liso Vascular , Animales , Ratones , Apolipoproteínas E/genética , Aterosclerosis/genética , Aterosclerosis/metabolismo , Cadherinas/metabolismo , Proliferación Celular , Células Cultivadas , Colesterol/metabolismo , Geles/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo
2.
ACS Appl Bio Mater ; 4(4): 3639-3648, 2021 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-33969280

RESUMEN

Complex shaped and critical-sized bone defects have been a clinical challenge for many years. Scaffold-based strategies such as hydrogels provide localized drug release while filling complex defect shapes, but ultimately possess weaknesses in low mechanical strength alongside a lack of macroporous and collagen-mimicking nanofibrous structures. Thus, there is a demand for mechanically strong, extracellular matrix (ECM) mimicking scaffolds that can robustly fit complex shaped critical sized defects and simultaneously provide localized, sustained, multiple growth factor release. We therefore developed a composite, bi-phasic PCL/hydroxyapatite (HA) 3D nanofibrous (NF) scaffold for bone tissue regeneration by using our innovative electrospun-based thermally induced self-agglomeration (TISA) technique. One intriguing feature of our ECM-mimicking TISA scaffolds is that they are highly elastic and porous even after evenly coated with minerals and can easily be pressed to fit different defect shapes. Furthermore, the bio-mimetic mineral deposition technique allowed us to simultaneously encapsulate different type of drugs, e.g., proteins and small molecules, on TISA scaffolds under physiologically mild conditions. Compared to scaffolds with physically surface-adsorbed phenamil, a BMP2 signaling agonist, incorporated phenamil composite scaffolds indicated less burst release and longer lasting sustained release of phenamil with subsequently improved osteogenic differentiation of cells in vitro. Overall, our study indicated that the innovative press-fit 3D NF composite scaffold may be a robust tool for multiple-drug delivery and bone tissue engineering.


Asunto(s)
Amilorida/análogos & derivados , Nanofibras/química , Poliésteres/química , Amilorida/química , Amilorida/metabolismo , Amilorida/farmacología , Animales , Regeneración Ósea/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Línea Celular , Durapatita/química , Módulo de Elasticidad , Matriz Extracelular/metabolismo , Ratones , Minerales/química , Osteoclastos/citología , Osteoclastos/metabolismo , Osteogénesis/efectos de los fármacos , Porosidad , Impresión Tridimensional , Albúmina Sérica Bovina/química , Albúmina Sérica Bovina/metabolismo , Propiedades de Superficie , Ingeniería de Tejidos
3.
Mater Sci Eng C Mater Biol Appl ; 112: 110941, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32409087

RESUMEN

Pectin nanofiber mats are promising tissue engineering scaffolds but suffer from poor cell infiltration. In this study, gelatin, a collagen derived cell adhesive protein, was used to crosslink the electrospun nanofibers of periodate oxidized pectin. Cell culture experiment results demonstrated that cells were able to grow into the gelatin-crosslinked pectin nanofiber mats rather than only spread on mat surface. The nanofiber mats showed moderate mechanical strength, with a maximum tensile strength of up to 2.3 MPa, an ultimate tensile strain of up to 15%, and were capable of degrading gradually over 4 weeks or even longer periods in simulated body fluids. Thus, gelatin-crosslinked pectin nanofiber mats hold a great potential for soft tissue regeneration.


Asunto(s)
Materiales Biocompatibles/química , Nanofibras/química , Pectinas/química , Animales , Materiales Biocompatibles/farmacología , Adhesión Celular/efectos de los fármacos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Gelatina/química , Ratones , Propiedades de Superficie , Resistencia a la Tracción , Ingeniería de Tejidos
4.
J Physiol ; 598(8): 1505-1522, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32083311

RESUMEN

KEY POINTS: This study demonstrates and evaluates the changes in rat vascular smooth muscle cell biomechanics following statin-mediated cholesterol depletion. Evidence is presented to show correlated changes in migration and adhesion of vascular smooth muscle cells to extracellular matrix proteins fibronectin and collagen. Concurrently, integrin α5 expression was enhanced but not integrin α2. Atomic force microscopy analysis provides compelling evidence of coordinated reduction in vascular smooth muscle cell stiffness and actin cytoskeletal orientation in response to statin-mediated cholesterol depletion. Proof is provided that statin-mediated cholesterol depletion remodels total vascular smooth muscle cell cytoskeletal orientation that may additionally participate in altering ex vivo aortic vessel function. It is concluded that statin-mediated cholesterol depletion may coordinate vascular smooth muscle cell migration and adhesion to different extracellular matrix proteins and regulate cellular stiffness and cytoskeletal orientation, thus impacting the biomechanics of the cell. ABSTRACT: Not only does cholesterol induce an inflammatory response and deposits in foam cells at the atherosclerotic plaque, it also regulates cellular mechanics, proliferation and migration in atherosclerosis progression. Statins are HMG-CoA reductase inhibitors that are known to inhibit cellular cholesterol biosynthesis and are clinically prescribed to patients with hypercholesterolemia or related cardiovascular conditions. Nonetheless, the effect of statin-mediated cholesterol management on cellular biomechanics is not fully understood. In this study, we aimed to assess the effect of fluvastatin-mediated cholesterol management on primary rat vascular smooth muscle cell (VSMC) biomechanics. Real-time measurement of cell adhesion, stiffness, and imaging were performed using atomic force microscopy (AFM). Cellular migration on extra cellular matrix (ECM) protein surfaces was studied by time-lapse imaging. The effect of changes in VSMC biomechanics on aortic function was assessed using an ex vivo myograph system. Fluvastatin-mediated cholesterol depletion (-27.8%) lowered VSMC migration distance on a fibronectin (FN)-coated surface (-14.8%) but not on a type 1 collagen (COL1)-coated surface. VSMC adhesion force to FN (+33%) and integrin α5 expression were enhanced but COL1 adhesion and integrin α2 expression were unchanged upon cholesterol depletion. In addition, VSMC stiffness (-46.6%) and ex vivo aortic ring contraction force (-40.1%) were lowered and VSMC actin cytoskeletal orientation was reduced (-24.5%) following statin-mediated cholesterol depletion. Altogether, it is concluded that statin-mediated cholesterol depletion may coordinate VSMC migration and adhesion to different ECM proteins and regulate cellular stiffness and cytoskeletal orientation, thus impacting the biomechanics of the cell and aortic function.


Asunto(s)
Inhibidores de Hidroximetilglutaril-CoA Reductasas , Músculo Liso Vascular , Animales , Fenómenos Biomecánicos , Movimiento Celular , Células Cultivadas , Colesterol , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Miocitos del Músculo Liso , Ratas
5.
ACS Appl Bio Mater ; 3(4): 2360-2369, 2020 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-34327310

RESUMEN

Vascular smooth muscle cell (VSMC) migration is a critical step in the progression of cardiovascular disease and aging. Migrating VSMCs encounter a highly heterogeneous environment with the varying extracellular matrix (ECM) composition due to the differential synthesis of collagen and fibronectin (FN) in different regions and greatly changing stiffness, ranging from the soft necrotic core of plaques to hard calcifications within blood vessel walls. In this study, we demonstrate an application of a two-dimensional (2D) model consisting of an elastically tunable polyacrylamide gel of varying stiffness and ECM protein coating to study VSMC migration. This model mimics the in vivo microenvironment that VSMCs experience within a blood vessel wall, which may help identify potential therapeutic targets for the treatment of atherosclerosis. We found that substrate stiffness had differential effects on VSMC migration on type 1 collagen (COL1) and FN-coated substrates. VSMCs on COL1-coated substrates showed significantly diminished migration distance on stiffer substrates, while on FN-coated substrates VSMCs had significantly increased migration distance. In addition, cortical stress fiber orientation increased in VSMCs cultured on more rigid COL1-coated substrates, while decreasing on stiffer FN-coated substrates. On both proteins, a more disorganized cytoskeletal architecture was associated with faster migration. Overall, these results demonstrate that different ECM proteins can cause substrate stiffness to have differential effects on VSMC migration in the progression of cardiovascular diseases and aging.

6.
Curr Top Membr ; 86: 279-299, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33837696

RESUMEN

Cardiovascular disease (CVD) remains the primary cause of death worldwide. Specifically, atherosclerosis is a CVD characterized as a slow progressing chronic inflammatory disease. During atherosclerosis, vascular walls accumulate cholesterol and cause fatty streak formation. The progressive changes in vascular wall stiffness exert alternating mechanical cues on vascular smooth muscle cells (VSMCs). The detachment of VSMCs in the media layer of the vessel and migration toward the intima is a critical step in atherosclerosis. VSMC phenotypic switching is a complicated process that modifies VSMC structure and biomechanical function. These changes affect the expression and function of cell adhesion molecules, thus impacting VSMC migration. Accumulating evidence has shown cholesterol is capable of regulating cellular migration, proliferation, and spreading. However, the interaction and coordinated effects of both cellular cholesterol and the extracellular matrix (ECM) stiffness/composition on VSMC biomechanics remains to be elucidated.


Asunto(s)
Músculo Liso Vascular , Miocitos del Músculo Liso , Fenómenos Biomecánicos , Movimiento Celular , Células Cultivadas , Colesterol
7.
Cardiovasc Res ; 115(8): 1369-1380, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-30395154

RESUMEN

AIMS: Cholesterol not only deposits in foam cells at the atherosclerotic plaque, but also plays an important role as a regulator of cell migration in atherogenesis. In addition, the progression of atherosclerosis leads to arterial wall stiffening, and thus altering the micromechanical environment of vascular smooth muscle cells (VSMCs) in vivo. Our studies aim to test the hypothesis that membrane cholesterol and substrate stiffness co-ordinate to regulate VSMCs biomechanics, and thus potentially regulate VSMCs migration and atherosclerotic plaque formation. METHODS AND RESULTS: Methyl-ß-cyclodextrin was used to manipulate membrane cholesterol content in VSMCs isolated from the descending thoracic aorta of male Sprague-Dawley rats and cultured on Type I collagen-coated polyacrylamide gel substrates with varying stiffness. Atomic force microscopy (AFM) was used to determine VSMCs stiffness and integrin-fibronectin (FN) adhesion. The alignment of submembranous actin filaments was visualized with AFM and confocal microscopy. The constriction force of rat aorta was measured ex vivo using a multi-wire myograph system. Our results demonstrated that cholesterol-depletion and substrate-softening induced a significant decrease in VSMCs stiffness and adhesion to FN, as well as cytoskeletal disorganization. In addition, the contractile force of rat aorta was reduced upon cholesterol-depletion. Cholesterol-enrichment resulted in an increase in stiffness, adhesion to FN, cytoskeletal organization of VSMCs compared with the cholesterol-depleted cells, and enhanced contractile force of rat aortas compared with the cholesterol-depleted vessel rings. CONCLUSION: Cell membrane cholesterol and substrate stiffness synergistically affect VSMCs elastic modulus (E-modulus) by regulating the organization of the actin cytoskeleton. Except for the 3.5 kPa gel substrate, cholesterol-depletion decreased VSMCs-FN adhesion force, adhesion loading rate, cytoskeletal orientation, and E-modulus compared with the control VSMCs. Conversely, cholesterol-enrichment significantly increased cytoskeleton orientation, stiffness, and VSMCs-FN cell adhesion force compared with both control and cholesterol-depleted VSMCs on a soft substrate.


Asunto(s)
Aterosclerosis/metabolismo , Membrana Celular/metabolismo , Colesterol/metabolismo , Citoesqueleto/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Rigidez Vascular , Animales , Aorta Torácica/metabolismo , Aorta Torácica/patología , Aorta Torácica/fisiopatología , Aterosclerosis/patología , Aterosclerosis/fisiopatología , Fenómenos Biomecánicos , Adhesión Celular , Membrana Celular/patología , Células Cultivadas , Citoesqueleto/patología , Módulo de Elasticidad , Masculino , Mecanotransducción Celular , Microscopía de Fuerza Atómica , Microscopía Confocal , Músculo Liso Vascular/patología , Músculo Liso Vascular/fisiopatología , Miocitos del Músculo Liso/patología , Ratas Sprague-Dawley , Estrés Mecánico , Vasoconstricción
8.
ACS Biomater Sci Eng ; 5(12): 6511-6519, 2019 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-33417803

RESUMEN

Despite significant progress over the past few decades, creating a tissue-engineered vascular graft with replicated functions of native blood vessels remains a challenge due to the mismatch in mechanical properties, low biological function, and rapid occlusion caused by restenosis of small diameter vessel grafts (<6 mm diameter). A scaffold with similar mechanical properties and biocompatibility to the host tissue is ideally needed for the attachment and proliferation of cells to support the building of engineered tissue. In this study, pectin hydrogel nanofiber scaffolds with two different oxidation degrees (25 and 50%) were prepared by a multistep methodology including periodate oxidation, electrospinning, and adipic acid dihydrazide crosslinking. Scanning electron microscopy (SEM) images showed that the obtained pectin nanofiber mats have a nano-sized fibrous structure with 300-400 nm fiber diameter. Physicochemical property testing using Fourier transform infrared (FTIR) spectra, atomic force microscopy (AFM) nanoindentations, and contact angle measurements demonstrated that the stiffness and hydrophobicity of the fiber mat could be manipulated by adjusting the oxidation and crosslinking levels of the pectin hydrogels. Live/Dead staining showed high viability of the mesenchymal stem cells (MSCs) cultured on the pectin hydrogel fiber scaffold for 14 days. In addition, the potential application of pectin hydrogel nanofiber scaffolds of different stiffness in stem cell differentiation into vascular cells was assessed by gene expression analysis. Real-time polymerase chain reaction (RT-PCR) results showed that the stiffer scaffold facilitated the differentiation of MSCs into vascular smooth muscle cells, while the softer fiber mat promoted MSC differentiation into endothelial cells. Altogether, our results indicate that the pectin hydrogel nanofibers have the capability of providing mechanical cues that induce MSC differentiation into vascular cells and can be potentially applied in stem cell-based tissue engineering.

9.
J Mater Chem B ; 7(16): 2703-2713, 2019 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-32255003

RESUMEN

Although a significant number of studies on vascular tissue engineering have been reported, the current availability of vessel substitutes in the clinic remains limited mainly due to the mismatch of their mechanical properties and biological functions with native vessels. In this study, a novel approach to fabricating a vessel graft for vascular tissue engineering was developed by promoting differentiation of human bone marrow mesenchymal stem cells (MSCs) into endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) on a native vascular extracellular matrix (ECM) scaffold in a rotary bioreactor. The expression levels of CD31 and vWF, and the LDL uptake capacity as well as the angiogenesis capability of the EC-like cells in the dynamic culture system were significantly enhanced compared to the static system. In addition, α-actin and smoothelin expression, and contractility of VSMC-like cells harvested from the dynamic model were much higher than those in a static culture system. The combination of on-site differentiation of stem cells towards vascular cells in the natural vessel ECM scaffold and maturation of the resulting vessel construct in a dynamic cell culture environment provides a promising approach to fabricating a clinically applicable vessel graft with similar mechanical properties and physiological functions to those of native blood vessels.


Asunto(s)
Reactores Biológicos , Células Endoteliales/citología , Células Madre Mesenquimatosas/citología , Músculo Liso Vascular/citología , Miocitos del Músculo Liso/citología , Ingeniería de Tejidos , Andamios del Tejido , Actinas/genética , Actinas/metabolismo , Animales , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Arterias Carótidas , Diferenciación Celular , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Expresión Génica , Humanos , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Miocitos del Músculo Liso/metabolismo , Estrés Mecánico , Porcinos , Calponinas
10.
Mater Sci Eng C Mater Biol Appl ; 93: 61-69, 2018 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-30274093

RESUMEN

Construction of an artificial vascular graft is widely considered a promising strategy in vascular tissue engineering. However, limited sources of functional vascular smooth muscle cells (VSMCs) remain a major obstacle in vascular tissue engineering. In this study, we innovatively developed an approach to obtain functional VSMCs by onsite differentiating human bone marrow-derived mesenchymal stem cells (MSCs) directed by decellularized extracellular matrix (ECM) and fibroblasts. The resulting cells and ECM-cells constructs were characterized by real time RT-PCR, immunofluorescence staining, cell contractile functions, and migration capacity. Our results showed both ECM and fibroblasts induced MSCs differentiation toward VSMC-like cells with increased transcription of marker genes, upregulated expression of contractile apparatus proteins, and enhanced functional activity of VSMC phenotype. Interestingly, our findings revealed that native ECM and fibroblasts-coculture had a higher potential to promote MSCs differentiation into VSMCs than growth factors cocktail (GFC) supplemented culture, thereby providing a potential source of VSMCs for blood vessel constitution.


Asunto(s)
Prótesis Vascular , Diferenciación Celular , Matriz Extracelular/química , Fibroblastos/metabolismo , Células Madre Mesenquimatosas/metabolismo , Miocitos del Músculo Liso/metabolismo , Ingeniería de Tejidos , Técnicas de Cocultivo , Fibroblastos/citología , Humanos , Células Madre Mesenquimatosas/citología , Miocitos del Músculo Liso/citología
11.
Colloids Surf B Biointerfaces ; 171: 31-39, 2018 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-30005288

RESUMEN

Three-dimensional (3D) scaffolds as artificial ECMs have been extensively studied to mimic the critical features of natural ECMs. To develop more clinically relevant 3D scaffolds, electrospun nanofibrous scaffolds with different weight ratios of PCL/PLA (i.e., 100/0, 60/40, and 20/80) were fabricated via the thermally induced (nanofiber) self-agglomeration (TISA) method. The hypothesis was that, with the weight ratio increase of stiffer and more bioactive PLA in the 3D PCL/PLA blend scaffolds, the osteogenic differentiation of human mesenchymal stem cells (hMSCs) would be enhanced. The results indicated that, all of the 3D scaffolds were elastic/resilient and possessed interconnected and hierarchical pores with sizes from sub-microns to ∼300 µm; therefore, the morphological structures of these scaffolds were similar to those of natural ECMs. The PLA80 scaffolds exhibited the best overall properties in terms of density, porosity, water absorption capacity, mechanical properties, bioactivity, and cell viability. Furthermore, with increasing the PLA weight ratio, the alkaline phosphatase (ALP) activity, calcium content, and gene expression level were also increased, probably due to the improved stiffness/bioactivity of scaffold. Hence, the novel 3D electrospun PLA80 nanofibrous scaffold might be desired/favorable for the osteogenic differentiation of hMSCs.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Nanofibras/química , Osteogénesis/efectos de los fármacos , Poliésteres/farmacología , Supervivencia Celular/efectos de los fármacos , Humanos , Tamaño de la Partícula , Poliésteres/química , Propiedades de Superficie
12.
Sci Rep ; 8(1): 2899, 2018 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-29440673

RESUMEN

Atomic force microscopy (AFM) is an attractive technique for studying biomechanical and morphological changes in live cells. Using real-time AFM monitoring of cellular mechanical properties, spontaneous oscillations in cell stiffness and cell adhesion to the extracellular matrix (ECM) have been found. However, the lack of automated analytical approaches to systematically extract oscillatory signals, and noise filtering from a large set of AFM data, is a significant obstacle when quantifying and interpreting the dynamic characteristics of live cells. Here we demonstrate a method that extends the usage of AFM to quantitatively investigate live cell dynamics. Approaches such as singular spectrum analysis (SSA), and fast Fourier transform (FFT) were introduced to analyze a real-time recording of cell stiffness and the unbinding force between the ECM protein-decorated AFM probe and vascular smooth muscle cells (VSMCs). The time series cell adhesion and stiffness data were first filtered with SSA and the principal oscillatory components were isolated from the noise floor with the computed eigenvalue from the lagged-covariance matrix. Following the SSA, the oscillatory parameters were detected by FFT from the noise-reduced time series data sets and the sinusoidal oscillatory components were constructed with the parameters obtained by FFT.


Asunto(s)
Fenómenos Mecánicos , Microscopía de Fuerza Atómica , Animales , Fenómenos Biomecánicos , Adhesión Celular , Músculo Liso Vascular/citología , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA