Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomol Concepts ; 5(1): 21-43, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25372740

RESUMEN

The interactions between protein-DNA are essential for various biological activities. In this review, we provide an overview of protein-DNA interactions that emphasizes the importance of dynamical aspects. We divide protein-DNA interactions into two categories: nonspecific and specific and both the categories would be discussed highlighting some of our relevant work. In the case of nonspecific protein-DNA interaction, solvation studies (picosecond and femtosecond-resolved) explore the role environmental dynamics and change in the micropolarity around DNA molecules upon complexation with histone protein (H1). While exploring the specific protein-DNA interaction at λ-repressor-operator sites interaction, particularly OR1 and OR2, it was observed that the interfacial water dynamics is minimally perturbed upon interaction with DNA, suggesting the labile interface in the protein-DNA complex. Förster resonance energy transfer (FRET) study revealed that the structure of the protein is more compact in repressor-OR2 complex than in the repressor-OR1 complex. Fluorescence anisotropy studies indicated enhanced flexibility of the C-terminal domain of the repressor at fast timescales after complex formation with OR1. The enhanced flexibility and different conformation of the C-terminal domain of the repressor upon complexation with OR1 DNA compared to OR2 DNA were found to have pronounced effect on the rate of photoinduced electron transfer.


Asunto(s)
Proteínas de Unión al ADN/química , ADN/química , Animales , Bacteriófago lambda/genética , ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Histonas/química , Histonas/metabolismo , Modelos Moleculares , Unión Proteica
2.
Chem Asian J ; 9(5): 1395-402, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24665050

RESUMEN

Charge migration along DNA molecules is a key factor for DNA-based devices in optoelectronics and biotechnology. The association of a significant amount of water molecules in DNA-based materials for the intactness of the DNA structure and their dynamic role in the charge-transfer (CT) dynamics is less documented in contemporary literature. In the present study, we have used a genomic DNA-cetyltrimethyl ammonium chloride (CTMA) complex, a technological important biomaterial, and Hoechest 33258 (H258), a well-known DNA minor groove binder, as fluorogenic probe for the dynamic solvation studies. The CT dynamics of CdSe/ZnS quantum dots (QDs; 5.2 nm) embedded in the as-prepared and swollen biomaterial have also been studied and correlated with that of the timescale of solvation. We have extended our studies on the temperature-dependent CT dynamics of QDs in a nanoenvironment of an anionic, sodium bis(2-ethylhexyl)sulfosuccinate reverse micelle (AOT RMs), whereby the number of water molecules and their dynamics can be tuned in a controlled manner. A direct correlation of the dynamics of solvation and that of the CT in the nanoenvironments clearly suggests that the hydration barrier within the Arrhenius framework essentially dictates the charge-transfer dynamics.


Asunto(s)
Materiales Biocompatibles , Bisbenzimidazol/química , Compuestos de Cetrimonio/química , ADN/química , Electroquímica , Compuestos de Cadmio/química , Cetrimonio , Transporte de Electrón , Modelos Moleculares , Conformación de Ácido Nucleico , Puntos Cuánticos , Compuestos de Selenio/química , Sulfuros/química , Compuestos de Zinc/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA