Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Med Rep ; 27(4)2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36825563

RESUMEN

Signal transducer and activator of transcription 3 (STAT3) signalling serves an important role in carcinogenesis and cellular senescence, and its inhibition in tumour cells represents an attractive therapeutic target. Premature cellular senescence, a process of permanent proliferative arrest of cells in response to various inducers, such as cytostatic drugs or ionizing radiation, is accompanied by morphological and secretory changes, and by altered susceptibility to chemotherapeutic agents, which can thereby complicate their eradication by cancer therapies. In the present study, the responsiveness of proliferating and docetaxel (DTX)­induced senescent cancer cells to small molecule STAT3 inhibitor Stattic and its analogues was evaluated using tumour cell lines. These agents displayed cytotoxic effects in cell viability assays on both proliferating and senescent murine TRAMP­C2 and TC­1 cells; however, senescent cells were markedly more resistant. Western blot analysis revealed that Stattic and its analogues effectively inhibited constitutive STAT3 phosphorylation in both proliferating and senescent cells. Furthermore, whether the Stattic­derived inhibitor K1836 could affect senescence induction or modulate the phenotype of senescent cells was evaluated. K1836 treatment demonstrated no effect on senescence induction by DTX. However, the K1836 compound significantly modulated secretion of certain cytokines (interleukin­6, growth­regulated oncogene α and monocyte chemoattractant protein­1). In summary, the present study demonstrated differences between proliferating and senescent tumour cells in terms of their susceptibility to STAT3 inhibitors and demonstrated the ability of the new STAT3 inhibitor K1836 to affect the secretion of essential components of the senescence­associated secretory phenotype. The present study may be useful for further development of STAT3 inhibitor­based therapy of cancer or age­related diseases.


Asunto(s)
Citocinas , Factor de Transcripción STAT3 , Animales , Ratones , Fosforilación , Factor de Transcripción STAT3/metabolismo , Expresión Génica , Docetaxel/farmacología , Citocinas/metabolismo , Senescencia Celular
2.
J Enzyme Inhib Med Chem ; 36(1): 410-424, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33440995

RESUMEN

Twelve novel analogs of STAT3 inhibitor BP-1-102 were designed and synthesised with the aim to modify hydrophobic fragments of the molecules that are important for interaction with the STAT3 SH2 domain. The cytotoxic activity of the reference and novel compounds was evaluated using several human and two mouse cancer cell lines. BP-1-102 and its two analogs emerged as effective cytotoxic agents and were further tested in additional six human and two murine cancer cell lines, in all of which they manifested the cytotoxic effect in a micromolar range. Reference compound S3I-201.1066 was found ineffective in all tested cell lines, in contrast to formerly published data. The ability of selected BP-1-102 analogs to induce apoptosis and inhibition of STAT3 receptor-mediated phosphorylation was confirmed. The structure-activity relationship confirmed a demand for two hydrophobic substituents, i.e. the pentafluorophenyl moiety and another spatially bulky moiety, for effective cytotoxic activity and STAT3 inhibition.


Asunto(s)
Ácidos Aminosalicílicos/farmacología , Antineoplásicos/farmacología , Diseño de Fármacos , Factor de Transcripción STAT3/antagonistas & inhibidores , Sulfonamidas/farmacología , Ácidos Aminosalicílicos/síntesis química , Ácidos Aminosalicílicos/química , Animales , Antineoplásicos/síntesis química , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Ratones , Ratones Endogámicos C57BL , Estructura Molecular , Fosforilación/efectos de los fármacos , Factor de Transcripción STAT3/metabolismo , Relación Estructura-Actividad , Sulfonamidas/síntesis química , Sulfonamidas/química
3.
Int J Oncol ; 53(5): 1997-2009, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30226595

RESUMEN

Cellular senescence is the process of the permanent proliferative arrest of cells in response to various inducers. It is accompanied by typical morphological changes, in addition to the secretion of bioactive molecules, including proinflammatory cytokines and chemokines [known as the senescence-associated secretory phenotype (SASP)]. Thus, senescent cells may affect their local environment and induce a so-called 'bystander' senescence through the state of SASP. The phenotypes of senescent cells are determined by the type of agent inducing cellular stress and the cell lineages. To characterise the phenotypes of senescent cancer cells, two murine cell lines were employed in the present study: TC-1 and B16F10 (B16) cells. Two distinct senescence inductors were used: Chemotherapeutic agent docetaxel (DTX) and a combination of immunomodulatory cytokines, including interferon Î³ (IFNγ) and tumour necrosis factor α (TNFα). It was demonstrated that DTX induced senescence in TC-1 and B16 tumour cell lines, which was demonstrated by growth arrest, positive ß-galactosidase staining, increased p21Waf1 (p21) expression and the typical SASP capable of inducing a 'bystander' senescence. By contrast, treatment with a combination of T helper cell 1 cytokines, IFNγ and TNFα, induced proliferation arrest only in B16 cells. Despite the presence of certain characteristic features resembling senescent cells (proliferation arrest, morphological changes and increased p21 expression), these cells were able to form tumours in vivo and started to proliferate upon cytokine withdrawal. In addition, B16 cells were not able to induce a 'bystander' senescence. In summary, the present study described cell line- and treatment-associated differences in the phenotypes of senescent cells that may be relevant in optimization of cancer chemo- and immunotherapy.


Asunto(s)
Antineoplásicos/farmacología , Efecto Espectador/inmunología , Senescencia Celular/inmunología , Docetaxel/farmacología , Interferón gamma/metabolismo , Neoplasias/inmunología , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Antineoplásicos/uso terapéutico , Efecto Espectador/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Senescencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Docetaxel/uso terapéutico , Humanos , Interferón gamma/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Fenotipo , Factor de Necrosis Tumoral alfa/inmunología
4.
Aging (Albany NY) ; 10(3): 434-462, 2018 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-29615539

RESUMEN

Aging involves tissue accumulation of senescent cells (SC) whose elimination through senolytic approaches may evoke organismal rejuvenation. SC also contribute to aging-associated pathologies including cancer, hence it is imperative to better identify and target SC. Here, we aimed to identify new cell-surface proteins differentially expressed on human SC. Besides previously reported proteins enriched on SC, we identified 78 proteins enriched and 73 proteins underrepresented in replicatively senescent BJ fibroblasts, including L1CAM, whose expression is normally restricted to the neural system and kidneys. L1CAM was: 1) induced in premature forms of cellular senescence triggered chemically and by gamma-radiation, but not in Ras-induced senescence; 2) induced upon inhibition of cyclin-dependent kinases by p16INK4a; 3) induced by TGFbeta and suppressed by RAS/MAPK(Erk) signaling (the latter explaining the lack of L1CAM induction in RAS-induced senescence); and 4) induced upon downregulation of growth-associated gene ANT2, growth in low-glucose medium or inhibition of the mevalonate pathway. These data indicate that L1CAM is controlled by a number of cell growth- and metabolism-related pathways during SC development. Functionally, SC with enhanced surface L1CAM showed increased adhesion to extracellular matrix and migrated faster. Our results provide mechanistic insights into senescence of human cells, with implications for future senolytic strategies.


Asunto(s)
Molécula L1 de Adhesión de Célula Nerviosa/metabolismo , Adhesión Celular/fisiología , Ciclo Celular , Línea Celular Tumoral , Movimiento Celular/fisiología , Senescencia Celular , Regulación hacia Abajo , Fibroblastos , Rayos gamma , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/efectos de la radiación , Humanos , Molécula L1 de Adhesión de Célula Nerviosa/genética , Interferencia de ARN , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta/farmacología
5.
Oncotarget ; 7(34): 54952-54964, 2016 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-27448982

RESUMEN

Standard-of-care chemo- or radio-therapy can induce, besides tumor cell death, also tumor cell senescence. While senescence is considered to be a principal barrier against tumorigenesis, senescent cells can survive in the organism for protracted periods of time and they can promote tumor development. Based on this emerging concept, we hypothesized that elimination of such potentially cancer-promoting senescent cells could offer a therapeutic benefit. To assess this possibility, here we first show that tumor growth of proliferating mouse TC-1 HPV-16-associated cancer cells in syngeneic mice becomes accelerated by co-administration of TC-1 or TRAMP-C2 prostate cancer cells made senescent by pre-treatment with the anti-cancer drug docetaxel, or lethally irradiated. Phenotypic analyses of tumor-explanted cells indicated that the observed acceleration of tumor growth was attributable to a protumorigenic environment created by the co-injected senescent and proliferating cancer cells rather than to escape of the docetaxel-treated cells from senescence. Notably, accelerated tumor growth was effectively inhibited by cell immunotherapy using irradiated TC-1 cells engineered to produce interleukin IL-12. Collectively, our data document that immunotherapy, such as the IL-12 treatment, can provide an effective strategy for elimination of the detrimental effects caused by bystander senescent tumor cells in vivo.


Asunto(s)
Senescencia Celular/efectos de los fármacos , Inmunoterapia Adoptiva/métodos , Interleucina-12/farmacología , Neoplasias Experimentales/terapia , Taxoides/farmacología , Carga Tumoral/efectos de los fármacos , Animales , Antineoplásicos/farmacología , Efecto Espectador/efectos de los fármacos , Línea Celular Tumoral , Terapia Combinada , Citocinas/genética , Citocinas/metabolismo , Docetaxel , Interleucina-12/biosíntesis , Masculino , Ratones Endogámicos C57BL , Neoplasias Experimentales/genética , Neoplasias Experimentales/metabolismo , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...