Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Oncogene ; 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39152269

RESUMEN

In the clinical development of farnesyltransferase inhibitors (FTIs) for HRAS-mutant tumors, responses varied by cancer type. Co-occurring mutations may affect responses. We aimed to uncover cooperative genetic events specific to HRAS-mutant tumors and to study their effect on sensitivity to FTIs. Using targeted sequencing data from the MSK-IMPACT and Dana-Farber Cancer Institute Genomic Evidence Neoplasia Information Exchange databases, we identified comutations that were observed predominantly in HRAS-mutant versus KRAS-mutant or NRAS-mutant cancers. HRAS-mutant cancers had a higher frequency of coaltered mutations (48.8%) in the MAPK, PI3K, or RTK pathway genes, compared with KRAS-mutant (41.4%) and NRAS-mutant (38.4%) cancers (p < 0.05). Class 3 BRAF, NF1, PTEN, and PIK3CA mutations were more prevalent in HRAS-mutant lineages. To study the effects of comutations on sensitivity to FTIs, HrasG13R was transfected into "RASless" (Kraslox/lox/Hras-/-/Nras-/-/RERTert/ert) mouse embryonic fibroblasts (MEFs), which sensitized nontransfected MEFs to tipifarnib. Comutation in the form of Pten or Nf1 deletion and Pik3caH1047R transduction led to resistance to tipifarnib in HrasG13R-transfected MEFs in the presence or absence of KrasWT, whereas BrafG466E transduction led to resistance to tipifarnib only in the presence of KrasWT. Combined treatment with tipifarnib and MEK inhibition sensitized cells to tipifarnib in all settings, including in MEFs with PI3K pathway comutations. HRAS-mutant tumors demonstrate lineage-dependent MAPK or PI3K pathway alterations, which confer resistance to tipifarnib. The combined use of FTIs and MEK inhibition is a promising strategy for HRAS-mutant tumors.

2.
bioRxiv ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-39026820

RESUMEN

RBM10 modulates transcriptome-wide cassette exon splicing. Loss-of-function RBM10 mutations are enriched in thyroid cancers with distant metastases. Analysis of transcriptomes and genes mis-spliced by RBM10 loss showed pro-migratory and RHO/RAC signaling signatures. RBM10 loss increases cell velocity. Cytoskeletal and ECM transcripts subject to exon-inclusion events included vinculin (VCL), tenascin C (TNC) and CD44. Knockdown of the VCL exon inclusion transcript in RBM10-null cells reduced cell velocity, whereas knockdown of TNC and CD44 exon-inclusion isoforms reduced invasiveness. RAC1-GTP levels were increased in RBM10-null cells. Mouse Hras G12V /Rbm1O KO thyrocytes develop metastases that are reversed by RBM10 or by combined knockdown of VCL, CD44 and TNC inclusion isoforms. Thus, RBM10 loss generates exon inclusions in transcripts regulating ECM-cytoskeletal interactions, leading to RAC1 activation and metastatic competency. Moreover, a CRISPR-Cas9 screen for synthetic lethality with RBM10 loss identified NFkB effectors as central to viability, providing a therapeutic target for these lethal thyroid cancers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA