Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Biomol Struct Dyn ; 40(18): 8508-8517, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-33860725

RESUMEN

Tuberculosis (TB) is one of the prominent cause of deaths across the world and multidrug-resistant and extensively drug-resistant TB continues to pose challenges for clinicians and public health centers. The risk of death is extremely high in individuals who have compromised immune systems, HIV infection, or diabetes. Research institutes and pharmaceutical companies have been working on repurposing existing drugs as effective therapeutic options against TB. The identification of suitable drugs with multi-target affinity profiles is a widely accepted way to combat the development of resistance. Flavin-dependent thymidylate synthase (FDTS), known as ThyX, is in the class of methyltransferases and is a possible target in the discovery of novel anti-TB drugs. In this study, we aimed to repurpose existing drugs approved by Food and Drug Administration (FDA) that could be used in the treatment of TB. An integrated screening was performed based on computational procedures: high-throughput molecular docking techniques, followed by molecular dynamics simulations of the target enzyme, ThyX. After performing in silico screening using a library of 3,967 FDA-approved drugs, the two highest-scoring drugs, Carglumic acid and Mesalazine, were selected as potential candidates that could be repurposed to treat TB.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Infecciones por VIH , Mycobacterium tuberculosis , Tuberculosis , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Flavinas , Humanos , Mesalamina/farmacología , Mesalamina/uso terapéutico , Simulación del Acoplamiento Molecular , Timidilato Sintasa , Tuberculosis/tratamiento farmacológico
2.
Comput Struct Biotechnol J ; 19: 2423-2446, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34025934

RESUMEN

Tuberculosis (TB) continues to be the leading cause of deaths due to its persistent drug resistance and the consequent ineffectiveness of anti-TB treatment. Recent years witnessed huge amount of sequencing data, revealing mutations responsible for drug resistance. However, the lack of an up-to-date repository remains a barrier towards utilization of these data and identifying major mutations-associated with resistance. Amongst all mutations, non-synonymous mutations alter the amino acid sequence of a protein and have a much greater effect on pathogenicity. Hence, this type of gene mutation is of prime interest of the present study. The purpose of this study is to develop an updated database comprising almost all reported substitutions within the Mycobacterium tuberculosis (M.tb) drug target genes rpoB, inhA, katG, pncA, gyrA and gyrB. Various bioinformatics prediction tools were used to assess the structural and biophysical impacts of the resistance causing non-synonymous single nucleotide polymorphisms (nsSNPs) at the molecular level. This was followed by evaluating the impact of these mutations on binding affinity of the drugs to target proteins. We have developed a comprehensive online resource named MycoTRAP-DB (Mycobacterium tuberculosis Resistance Associated Polymorphisms Database) that connects mutations in genes with their structural, functional and pathogenic implications on protein. This database is accessible at http://139.59.12.92. This integrated platform would enable comprehensive analysis and prioritization of SNPs for the development of improved diagnostics and antimycobacterial medications. Moreover, our study puts forward secondary mutations that can be important for prognostic assessments of drug-resistance mechanism and actionable anti-TB drugs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA