Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Imaging ; 9(9)2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37754931

RESUMEN

Colorectal cancer is one of the leading death causes worldwide, but, fortunately, early detection highly increases survival rates, with the adenoma detection rate being one surrogate marker for colonoscopy quality. Artificial intelligence and deep learning methods have been applied with great success to improve polyp detection and localization and, therefore, the adenoma detection rate. In this regard, a comparison with clinical experts is required to prove the added value of the systems. Nevertheless, there is no standardized comparison in a laboratory setting before their clinical validation. The ClinExpPICCOLO comprises 65 unedited endoscopic images that represent the clinical setting. They include white light imaging and narrow band imaging, with one third of the images containing a lesion but, differently to another public datasets, the lesion does not appear well-centered in the image. Together with the dataset, an expert clinical performance baseline has been established with the performance of 146 gastroenterologists, who were required to locate the lesions in the selected images. Results shows statistically significant differences between experience groups. Expert gastroenterologists' accuracy was 77.74, while sensitivity and specificity were 86.47 and 74.33, respectively. These values can be established as minimum values for a DL method before performing a clinical trial in the hospital setting.

2.
Life (Basel) ; 13(3)2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36983781

RESUMEN

BACKGROUND: Melanoma incidence has continued to rise in the latest decades, and the forecast is not optimistic. Non-invasive diagnostic imaging techniques such as optical coherence tomography (OCT) are largely studied; however, there is still no agreement on its use for the diagnosis of melanoma. For dermatologists, the differentiation of non-invasive (junctional nevus, compound nevus, intradermal nevus, and melanoma in-situ) versus invasive (superficial spreading melanoma and nodular melanoma) lesions is the key issue in their daily routine. METHODS: This work performs a comparative analysis of OCT images using haematoxylin-eosin (HE) and anatomopathological features identified by a pathologist. Then, optical and textural properties are extracted from OCT images with the aim to identify subtle features that could potentially maximize the usefulness of the imaging technique in the identification of the lesion's potential invasiveness. RESULTS: Preliminary features reveal differences discriminating melanoma in-situ from superficial spreading melanoma and also between melanoma and nevus subtypes that pose a promising baseline for further research. CONCLUSIONS: Answering the final goal of diagnosing non-invasive versus invasive lesions with OCT does not seem feasible in the short term, but the obtained results demonstrate a step forward to achieve this.

3.
J Pathol Inform ; 13: 100012, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35223136

RESUMEN

Colorectal cancer presents one of the most elevated incidences of cancer worldwide. Colonoscopy relies on histopathology analysis of hematoxylin-eosin (H&E) images of the removed tissue. Novel techniques such as multi-photon microscopy (MPM) show promising results for performing real-time optical biopsies. However, clinicians are not used to this imaging modality and correlation between MPM and H&E information is not clear. The objective of this paper is to describe and make publicly available an extensive dataset of fully co-registered H&E and MPM images that allows the research community to analyze the relationship between MPM and H&E histopathological images and the effect of the semantic gap that prevents clinicians from correctly diagnosing MPM images. The dataset provides a fully scanned tissue images at 10x optical resolution (0.5 µm/px) from 50 samples of lesions obtained by colonoscopies and colectomies. Diagnostics capabilities of TPF and H&E images were compared. Additionally, TPF tiles were virtually stained into H&E images by means of a deep-learning model. A panel of 5 expert pathologists evaluated the different modalities into three classes (healthy, adenoma/hyperplastic, and adenocarcinoma). Results showed that the performance of the pathologists over MPM images was 65% of the H&E performance while the virtual staining method achieved 90%. MPM imaging can provide appropriate information for diagnosing colorectal cancer without the need for H&E staining. However, the existing semantic gap among modalities needs to be corrected.

4.
J Pers Med ; 11(9)2021 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-34575679

RESUMEN

BACKGROUND: Alzheimer's is a degenerative dementing disorder that starts with a mild memory impairment and progresses to a total loss of mental and physical faculties. The sooner the diagnosis is made, the better for the patient, as preventive actions and treatment can be started. Although tests such as the Mini-Mental State Tests Examination are usually used for early identification, diagnosis relies on magnetic resonance imaging (MRI) brain analysis. METHODS: Public initiatives such as the OASIS (Open Access Series of Imaging Studies) collection provide neuroimaging datasets openly available for research purposes. In this work, a new method based on deep learning and image processing techniques for MRI-based Alzheimer's diagnosis is proposed and compared with previous literature works. RESULTS: Our method achieves a balance accuracy (BAC) up to 0.93 for image-based automated diagnosis of the disease, and a BAC of 0.88 for the establishment of the disease stage (healthy tissue, very mild and severe stage). CONCLUSIONS: Results obtained surpassed the state-of-the-art proposals using the OASIS collection. This demonstrates that deep learning-based strategies are an effective tool for building a robust solution for Alzheimer's-assisted diagnosis based on MRI data.

5.
J Pathol Inform ; 12: 27, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34447607

RESUMEN

BACKGROUND: Colorectal cancer has a high incidence rate worldwide, with over 1.8 million new cases and 880,792 deaths in 2018. Fortunately, its early detection significantly increases the survival rate, reaching a cure rate of 90% when diagnosed at a localized stage. Colonoscopy is the gold standard technique for detection and removal of colorectal lesions with potential to evolve into cancer. When polyps are found in a patient, the current procedure is their complete removal. However, in this process, gastroenterologists cannot assure complete resection and clean margins which are given by the histopathology analysis of the removed tissue, which is performed at laboratory. AIMS: In this paper, we demonstrate the capabilities of multiphoton microscopy (MPM) technology to provide imaging biomarkers that can be extracted by deep learning techniques to identify malignant neoplastic colon lesions and distinguish them from healthy, hyperplastic, or benign neoplastic tissue, without the need for histopathological staining. MATERIALS AND METHODS: To this end, we present a novel MPM public dataset containing 14,712 images obtained from 42 patients and grouped into 2 classes. A convolutional neural network is trained on this dataset and a spatially coherent predictions scheme is applied for performance improvement. RESULTS: We obtained a sensitivity of 0.8228 ± 0.1575 and a specificity of 0.9114 ± 0.0814 on detecting malignant neoplastic lesions. We also validated this approach to estimate the self-confidence of the network on its own predictions, obtaining a mean sensitivity of 0.8697 and a mean specificity of 0.9524 with the 18.67% of the images classified as uncertain. CONCLUSIONS: This work lays the foundations for performing in vivo optical colon biopsies by combining this novel imaging technology together with deep learning algorithms, hence avoiding unnecessary polyp resection and allowing in situ diagnosis assessment.

6.
BMC Cancer ; 21(1): 467, 2021 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-33902503

RESUMEN

BACKGROUND: The high incidence and mortality rate of colorectal cancer require new technologies to improve its early diagnosis. This study aims at extracting the medical needs related to the endoscopic technology and the colonoscopy procedure currently used for colorectal cancer diagnosis, essential for designing these demanded technologies. METHODS: Semi-structured interviews and an online survey were used. RESULTS: Six endoscopists were interviewed and 103 were surveyed, obtaining the demanded needs that can be divided into: a) clinical needs, for better polyp detection and classification (especially flat polyps), location, size, margins and penetration depth; b) computer-aided diagnosis (CAD) system needs, for additional visual information supporting polyp characterization and diagnosis; and c) operational/physical needs, related to limitations of image quality, colon lighting, flexibility of the endoscope tip, and even poor bowel preparation. CONCLUSIONS: This study shows some undertaken initiatives to meet the detected medical needs and challenges to be solved. The great potential of advanced optical technologies suggests their use for a better polyp detection and classification since they provide additional functional and structural information than the currently used image enhancement technologies. The inspection of remaining tissue of diminutive polyps (< 5 mm) should be addressed to reduce recurrence rates. Few progresses have been made in estimating the infiltration depth. Detection and classification methods should be combined into one CAD system, providing visual aids over polyps for detection and displaying a Kudo-based diagnosis suggestion to assist the endoscopist on real-time decision making. Estimated size and location of polyps should also be provided. Endoscopes with 360° vision are still a challenge not met by the mechanical and optical systems developed to improve the colon inspection. Patients and healthcare providers should be trained to improve the patient's bowel preparation.


Asunto(s)
Pólipos del Colon/diagnóstico por imagen , Colonoscopía/métodos , Neoplasias Colorrectales/diagnóstico por imagen , Diagnóstico por Computador , Evaluación de Necesidades , Adulto , Pólipos del Colon/patología , Neoplasias Colorrectales/epidemiología , Femenino , Tecnología de Fibra Óptica , Encuestas de Atención de la Salud/estadística & datos numéricos , Humanos , Aumento de la Imagen , Incidencia , Iluminación , Masculino , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...