Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Surg Endosc ; 37(2): 1476-1486, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35768736

RESUMEN

INTRODUCTION: Roux-en-Y gastric bypass (RYGB) significantly alters the gut microbiome and may be a mechanism for post-operative cardiovascular disease improvement. We have previously found an association between the class of peri-operative, intravenous antibiotic administered at the time of RYGB and the resolution rate of hypertension suggesting the gut microbiome as a mechanism. In this study, we performed a prospective study of RYGB to determine if a single intravenous antibiotic could alter the gastrointestinal microbial composition. METHODS: Patients undergoing RYGB were randomized to a single, peri-operative antibiotic of intravenous cefazolin (n = 8) or clindamycin (n = 8). Stool samples were collected from four-time points: 2 weeks pre-op (- 2w), 2 days pre-op (- 2d), 2 weeks post-op (+ 2w) and 3 months post-op (+ 3m). Stool samples were processed for genomic DNA followed by Illumina 16S rRNA gene sequencing and shotgun metagenomic sequencing (MGS). RESULTS: A total of 60 stool samples (- 2w, n = 16; - 2d, n = 15; + 2w, n = 16; + 3m, n = 13) from 16 patients were analyzed. 87.5% of patients were female with an average age of 48.6 ± 12.2 years and pre-operative BMI of 50.9 ± 23.3 kg/m2. RYGB induced statistically significant differences in alpha and beta diversity. There were statistically significant differences in alpha diversity at + 2w and beta diversity at + 3m due to antibiotic treatment. MGS revealed significantly distinct gut microbiota with 11 discriminatory metagenomic assembled genomes driven by antibiotic treatment at 3 months post-op, including increased Bifidobacterium spp. with clindamycin. CONCLUSION: RYGB induces significant changes in the gut microbiome at 2 weeks that are maintained 3 months after surgery. However, the single peri-operative dose of antibiotic administered at the time of RYGB induces unique and persisting changes to the gut microbiome that are antibiotic-specific. Increased Bifidobacterium spp. with clindamycin administration may improve the metabolic efficacy of RYGB when considering gut-microbiome driven mechanisms for blood pressure resolution.


Asunto(s)
Derivación Gástrica , Microbioma Gastrointestinal , Obesidad Mórbida , Humanos , Femenino , Adulto , Persona de Mediana Edad , Masculino , Microbioma Gastrointestinal/fisiología , Antibacterianos , Clindamicina , Estudios Prospectivos , ARN Ribosómico 16S , Obesidad Mórbida/cirugía
3.
Front Physiol ; 13: 855054, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35283781

RESUMEN

Cardiovascular disease represents the leading cause of death in the United States, and metabolic diseases such as obesity represent the primary impediment to improving cardiovascular health. Rodent (mouse and rat) models are widely used to model cardiometabolic disease, and as a result, there is increasing interest in the development of accurate and precise methodologies with sufficiently high resolution to dissect mechanisms controlling cardiometabolic physiology in these small organisms. Further, there is great utility in the development of centralized core facilities furnished with high-throughput equipment configurations and staffed with professional content experts to guide investigators and ensure the rigor and reproducibility of experimental endeavors. Here, we outline the array of specialized equipment and approaches that are employed within the Comprehensive Rodent Metabolic Phenotyping Core (CRMPC) and our collaborating laboratories within the Departments of Physiology, Pediatrics, Microbiology & Immunology, and Biomedical Engineering at the Medical College of Wisconsin (MCW), for the detailed mechanistic dissection of cardiometabolic function in mice and rats. We highlight selected methods for the analysis of body composition and fluid compartmentalization, electrolyte accumulation and flux, energy accumulation and flux, physical activity, ingestive behaviors, ventilatory function, blood pressure, heart rate, autonomic function, and assessment and manipulation of the gut microbiota. Further, we include discussion of the advantages and disadvantages of these approaches for their use with rodent models, and considerations for experimental designs using these methods.

4.
mSystems ; 7(1): e0023021, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35076278

RESUMEN

The gut microbiome plays an essential role in host energy homeostasis and influences the development of obesity and related conditions. Studies demonstrate that nicotinamide riboside (NR) supplementation for diet-induced obesity (DIO) reduces weight gain and increases energy expenditure in mice. NR is a vitamin B3 derivative and an NAD+ precursor with potential for treating human diseases arising from mitochondrial degeneration, including obesity and type 2 diabetes. Gut bacteria produce vitamin B3 in the colon and are capable of salvaging and metabolizing vitamin B3 and its derivatives. However, it is unknown how dietary supplementation of NR alters the microbiome and if those alterations contribute to deflection of weight gain. In this study, we fed C57BL/6J male mice a high-fat diet (HFD) supplemented with or without NR and performed a fecal material transfer (FMT) to establish a link between NR-conditioned microbiota and NR-induced deflection of weight gain. FMT from NR-treated donors to naive mice fed a HFD was sufficient to deflect weight gain by increasing energy expenditure. We also investigated the effects of NR on the microbiome by using metagenomics sequencing. We found that NR-treated mice displayed an altered gut microbial composition relative to controls and that fecal transplant resulted in a distinct functional metabolic profile characterized by enrichment of butyrate-producing Firmicutes. NR-treated donors and subsequent FMT recipients share a similar enrichment of metagenomic biomarkers relative to controls. These findings suggest that microbial factors contribute to the beneficial effects of dietary NR supplementation, which may be useful to enhance the therapeutic effects of NR. IMPORTANCE With obesity and type 2 diabetes (T2D) at epidemic levels, we need to understand the complex nature of these diseases to design better therapeutics. The underlying causes of both obesity and T2D are complex, but both are thought to develop, in part, based on contributions from the gut microbiota. Nicotinamide riboside is a gut-derived vitamin B3 derivative and NAD+ precursor which has the potential to treat and prevent metabolic disorders by ameliorating mitochondrial dysfunction. Understanding how NR affects the gut microbiome and whether NR-conditioned microbiota contributes to weight loss in the host would (i) improve diagnosis and treatments for obesity and other metabolic pathologies, (ii) tailor treatments to satisfy the needs of each individual moving toward the future of precision medicine, and (iii) benefit other scientific fields that currently investigate the effects of NR in other disease pathologies.


Asunto(s)
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Masculino , Humanos , Animales , Ratones , Dieta Alta en Grasa , NAD/efectos adversos , Ratones Endogámicos C57BL , Aumento de Peso , Obesidad/inducido químicamente , Vitaminas/efectos adversos
5.
Acta Physiol (Oxf) ; 232(4): e13662, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33866692

RESUMEN

AIM: Our previous studies have demonstrated the importance of dietary factors in the determination of hypertension in Dahl salt-sensitive (SS) rats. Since the gut microbiota has been implicated in chronic diseases like hypertension, we hypothesized that dietary alterations shift the microbiota to mediate the development of salt-sensitive hypertension and renal disease. METHODS: This study utilized SS rats from the Medical College of Wisconsin (SS/MCW) maintained on a purified, casein-based diet (0.4% NaCl AIN-76A, Dyets) and from Charles River Laboratories (SS/CRL) fed a whole grain diet (0.75% NaCl 5L79, LabDiet). Faecal 16S rDNA sequencing was used to phenotype the gut microbiota. Directly examining the contribution of the gut microbiota, SS/CRL rats were administered faecal microbiota transfer (FMT) experiments with either SS/MCW stool or vehicle (Vehl) in conjunction with the HS AIN-76A diet. RESULTS: SS/MCW rats exhibit renal damage and inflammation when fed high salt (HS, 4.0% NaCl AIN-76A), which is significantly attenuated in SS/CRL. Gut microbiota phenotyping revealed distinct profiles that correlate with disease severity. SS/MCW FMT worsened the SS/CRL response to HS, evidenced by increased albuminuria (67.4 ± 6.9 vs 113.7 ± 25.0 mg/day, Vehl vs FMT, P = .007), systolic arterial pressure (158.6 ± 5.8 vs 177.8 ± 8.9 mmHg, Vehl vs FMT, P = .09) and renal T-cell infiltration (1.9-fold). Amplicon sequence variant (ASV)-based analysis of faecal 16S rDNA sequencing data revealed taxa that significantly shifted with FMT: Erysipelotrichaceae_2, Parabacteroides gordonii, Streptococcus alactolyticus, Bacteroidales_1, Desulfovibrionaceae_2, Ruminococcus albus. CONCLUSIONS: These data demonstrate that dietary modulation of the gut microbiota directly contributes to the development of Dahl SS hypertension and renal injury.


Asunto(s)
Microbioma Gastrointestinal , Hipertensión , Animales , Bacteroidetes , Presión Sanguínea , Dieta , Riñón , Ratas , Ratas Endogámicas Dahl , Ruminococcus , Cloruro de Sodio , Cloruro de Sodio Dietético , Streptococcus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...