Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Food Funct ; 15(12): 6578-6596, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38809119

RESUMEN

This study investigated the dual potential of Azolla pinnata fern protein hydrolysates (AFPHs) as functional and nutraceutical ingredients in an oil/water emulsion system. The AFPH-stabilised emulsion (AFPH-E) displayed a small and uniform droplet distribution and was stable to aggregation and creaming over a wide range of pH (5-8), salt concentrations ≤ 100 mM, and heat treatment ≤ 70 °C. Besides, the AFPH-E possessed and maintained strong biological activities, including antihypertensive, antidiabetic, and antioxidant, under different food processing conditions (pH 5-8; NaCl: 50-150 mM, and heat treatment: 30-100 °C). Following in vitro gastrointestinal digestion, the antihypertensive and antioxidant activities were unchanged, while a notable increase of 8% was observed for DPPH. However, the antidiabetic activities were partially reduced in the range of 5-11%. Notably, AFPH-E modulated the gut microbiota and short-chain fatty acids (SCFAs), promoting the growth of beneficial bacteria, particularly Bifidobacteria and Lactobacilli, along with increased SCFA acetate, propionate, and butyrate. Also, AFPH-E up to 10 mg mL-1 did not affect the proliferation of the normal colon cells. In the current work, AFPH demonstrated dual functionality as a plant-based emulsifier with strong biological activities in an oil/water emulsion system and promoted healthy changes in the human gut microbiota.


Asunto(s)
Suplementos Dietéticos , Emulsionantes , Emulsiones , Helechos , Microbioma Gastrointestinal , Hidrolisados de Proteína , Humanos , Microbioma Gastrointestinal/efectos de los fármacos , Emulsiones/química , Emulsionantes/farmacología , Emulsionantes/química , Hidrolisados de Proteína/farmacología , Hidrolisados de Proteína/química , Helechos/química , Antioxidantes/farmacología , Hipoglucemiantes/farmacología , Ácidos Grasos Volátiles/metabolismo
2.
Front Microbiol ; 14: 1245042, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37881253

RESUMEN

Commercial acacia gum (AG) used in this study is a premium-grade free-flowing powder. It is a gummy exudate composed of arabinogalactan branched polysaccharide, a biopolymer of arabinose and galactose. Also known as food additive, acacia gum (E414), which is presently marketed as a functional dietary fiber to improve overall human gut health. The health effects may be related to the luminal pH regulation from the short-chain fatty acids (SCFA) production. Studies suggested that amylolytic and butyrogenic pathways are the major factors determining the SCFA outcome of AG in the lower gut. However, the primary bacteria involved in the fermentation have not been studied. This study aimed to investigate the putative primary degraders of acacia gum in the gut ecosystem. Isolation and identification of gum-fermenting bacteria were performed through enrichment culture fermentation. The experiment was conducted in an anaerobic chamber for 144 h in three stages. The study was conducted in triplicate using an anaerobic chamber system. This culture system allows specific responses to support only bacteria that are responsible for gum fermentation among the gut microbiota. Five bacterial strains were isolated and found to be gum-fermenting bacteria. Based on the 16s RNA sequence, the isolates matched to butyrate-producing Escherichia fergusonii, ATCC 35469.

3.
Membranes (Basel) ; 12(10)2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36295672

RESUMEN

To meet the need for food products to be safe and fresh, smart food packaging that can monitor and give information about the quality of packaged food has been developed. In this study, pH-sensitive films with sago starch and various anthocyanin concentrations of Brassica oleracea also known as red cabbage anthocyanin (RCA) at 8, 10, 12, and 14% (w/v) were manufactured using the solvent casting process. Investigation of the physicochemical, mechanical, thermal, and morphological characteristics of the films was performed and analysed. The response of these materials against pH changes was evaluated with buffers of different pH. When the films were exposed to a series of pH buffers (pH 3, 5, 9, 11, and 13), the RCA-associated films displayed a spectacular colour response. In addition, the ability of the starch matrix to overcome the leaching and release of anthocyanins was investigated. Higher concentrations of RCA can maintain the colour difference of films after being immersed in a series of buffer solutions ranging from acidic to basic conditions. Other than that, incorporating RCA extracts into the starch formulation increased the thickness whereas the water content, swelling degree, tensile strength, and elongation at break decreased as compared to films without RCA. The immobilisation of anthocyanin into the film was confirmed by the FTIR measurements. The surface patterns of films were heterogeneous and irregular due to the presence of RCA extract aggregates, which increased as the extract concentration enhanced. However, this would not affect the properties of films. An increase in thermal stability was noted for the anthocyanin-containing films at the final stage of degradation in TGA analysis. It is concluded that RCA and sago starch formulation has great potential to be explored for food packaging purposes.

4.
J Sci Food Agric ; 102(15): 7231-7238, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35760587

RESUMEN

BACKGROUND: Edible palm hearts (EPH), known as palmito, chonta or swamp cabbage in America or umbut in Malaysia, is a type of vegetable harvested from palm tree species. EPH is firm and smooth and described as having a flavor resembling artichoke. It has underlying prebiotic potential that selectively stimulates the growth and activity of beneficial colonic microbiota, thus enhancing the host's health. This study is the first to present results of EPH from local species such as oil palm (Elaeis guineensis), sago palm (Metroxylon sagu) and coconut (Cocos nucifera) using in vitro colonic fermentation with human fecal slurry. Samples obtained at 0, 6, 12 and 24 h were evaluated by bacterial enumeration using fluorescent in situ hybridization (FISH), and short-chain fatty acids (SCFA) were analyzed by high-performance liquid chromatography (HPLC). RESULTS: All EPH samples revealed induction effects towards Bifidobacterium spp., Lactobacillus-Enterococcus and Bacteroidaceae/Prevotellaceae populations similar to those in inulin fermentation. A significant decrease (P ≤ 0.05) in pathogenic Clostridium histolyticum group was observed in the response of raw sago palm hearts. In general, all samples stimulate the production of SCFA. Particularly in the colonic fermentation of sago palm heart, acetate and propionate revealed the highest concentrations of 286.18 and 284.83 mmol L-1 in raw and cooked form, respectively. CONCLUSION: This study concluded that edible palm hearts can be a potential prebiotic ingredient that promotes human gastrointestinal health, as well as discovering a new direction towards an alternative source of functional foods. © 2022 Society of Chemical Industry.


Asunto(s)
Arecaceae , Prebióticos , Humanos , Fermentación , Hibridación Fluorescente in Situ , Heces/microbiología , Bifidobacterium , Ácidos Grasos Volátiles , Cocos
5.
Plants (Basel) ; 10(11)2021 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34834873

RESUMEN

The differences in pungency of "sirih" imply the probable occurrence of several variants of Piper betle L. in Malaysia. However, the metabolite profiles underlying the pungency of the different variants remain a subject of further research. The differences in metabolite profiles of selected Malaysian P. betle variants were thus investigated; specifically, the leaf aqueous methanolic extracts and essential oils were analyzed via 1H-NMR and GC-MS metabolomics, respectively. Principal component analysis (PCA) of the 1H-NMR spectral data showed quantitative differences in the metabolite profiles of "sirih melayu" and "sirih india" and revealed an ambiguous group of samples with low acetic acid content, which was identified as Piper rubro-venosum hort. ex Rodigas based on DNA sequences of the internal transcribed spacer 2 (ITS2) region. The finding was supported by PCA of two GC-MS datasets of P. betle samples obtained from several states in Peninsular Malaysia, which displayed clustering of the samples into "sirih melayu" and "sirih india" groups. Higher abundance of chavicol acetate was consistently found to be characteristic of "sirih melayu". The present research has provided preliminary evidence supporting the notion of occurrence of two P. betle variants in Malaysia based on chemical profiles, which may be related to the different genders of P. betle.

6.
ACS Omega ; 6(28): 17782-17797, 2021 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-34308014

RESUMEN

Acacia gum (AG) is a branched-polysaccharide gummy exudate that consists of arabinose and galactose. The traditional practice in African-Middle Eastern countries uses this gum as medicine. Traditional use of AG is to treat stomach disease, which can be a potential functional food. In this research, commercially available AG from Acacia senegal and Acacia seyal was investigated as the prebiotic. The experiment employed a pH-controlled in vitro colon model inoculated with human fecal microbiota to mimic the human colon. Fermentation samples at 0, 6, 12, and 24 h were brought for short-chain fatty acid (SCFA) analysis using high-performance liquid chromatography and bacterial enumeration via fluorescent in situ hybridization. Results showed that AG significantly promotes Bifidobacteria proliferation similar to fructo-oligosaccharides (FOS) while inhibiting the Clostridium histolyticum group, commonly associated with gut dysbiosis. Acetate, propionate, and butyrate showed a similar trend to FOS (p > 0.05). The AG shows potential against gut dysbiosis, as it promotes gut-probiotics, through modulation of microbial population and SCFA production, especially butyrate.

7.
Int J Biol Macromol ; 175: 422-431, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33561458

RESUMEN

Bioactive edible swiftlet's nest (ESN) sialylated-mucin (SiaMuc) hydrolysate is produced by alcalase hydrolysis. Enzymatic hydrolysis of ESN breakdown high-valued ESN SiaMuc-glycoprotein into bioactive SiaMuc-glycopeptide. This is a breakthrough for the issue of insolubility and low extraction rate in ESN, and even increases the bioavailability of ESN nutritional functionality and health benefits. Hydrolysis of ESN SiaMuc-glycoprotein was performed for 1 to 4 h and its effect on physicochemical properties, molecular weight (MW) distribution, SiaMuc-glycoprotein and glycopeptide integrity were determined. Other than improvement in solubility and bioavailability as SiaMuc-glycopeptide, results from SDS-PAGE revealed that MW of SiaMuc-glycoprotein decreased from 42.0-148.8 kDa to 17.7-142.7 kDa with increasing hydrolysis period. Further hydrolysis from maximized DH (90 min) showed an insignificant effect on the MW of ESN SiaMuc-glycopeptide and remained constant at 15.2 kDa. This highlights that enzymatic hydrolysis only influences macro SiaMuc-glycoprotein fractions (142.7, 115.3 and 102.7 kDa), while the majority of SiaMuc-glycopeptide fractions from 36.6-98.6 kDa remained intact. Conclusively, alcalase hydrolysis of ESN showed high recovery in the form of bioactive ESN SiaMuc-glycopeptide. Therefore, enzymatic biotechnology is an economic alternative applicable on ESN that broaden industrial utilization by reducing the MW without destroying the quality of bioactive SiaMuc-glycoprotein.


Asunto(s)
Mucinas/química , Mucinas/metabolismo , Hidrolisados de Proteína/metabolismo , Animales , Aves , Electroforesis en Gel de Poliacrilamida , Glicopéptidos/química , Glicopéptidos/metabolismo , Glicoproteínas/química , Glicoproteínas/metabolismo , Hidrólisis , Peso Molecular , Hidrolisados de Proteína/química , Subtilisinas/metabolismo
8.
J Food Sci Technol ; 57(8): 2786-2799, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32624588

RESUMEN

There are numerous species of bacteria resides in the lumen of human colon. The word 'colon', resembles colony or the colonization of microbiota of which plays an important role in the fermentation of prebiotics. The standpoint of prebiotic nowadays is well reported for attenuating gut dysbiosis in many clinical studies tested on animals and human. However, because of the huge amount of gut microbiome, the attempt to connect the dots between bacterial population and the host are not plainly discernible. Thus, a need to analyse recent research on the pathways of prebiotic metabolism adopted by commonly studied probiotics i.e. Bifidobacteria and Lactobacillus. Several different substrate-dependent gene expressions are induced to break down oligosaccharide molecules shown by those probiotics. The hydrolysis can occur either by membrane bound (extracellular) or cytoplasmic (intracellular) enzyme of the enteric bacteria. Therefore, this review narrates several prebiotic metabolisms occur during gut fermentation, and metabolite production i.e. organic acids conversion.

9.
Int J Food Sci Nutr ; 68(7): 821-828, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28393631

RESUMEN

Red seaweed (Kappaphycus alvarezii) cultivated from Sabah (RSS) and Langkawi (RSL) were digested using in vitro mouth, gastric and duodenal model. The digested seaweed then fermented in a pH-controlled batch culture system inoculated with human faeces to mimic the distal colon. Bacterial enumeration were monitored using fluorescent in situ hybridisation, and the fermentation end products, the short chain fatty acids (SCFA), were analysed using HPLC. Both RSS and RSL showed significant increase of Bifidobacterium sp.; from log10 7.96 at 0 h to log10 8.72 at 24 h, and from log10 7.96 at 0 h to log10 8.60 at 24 h, respectively, and shows no significant difference when compared to the Bifidobacterium sp. count at 24 h of inulin fermentation. Both seaweeds also showed significant increase in total SCFA production, particularly acetate and propionate. Overall, this data suggested that K. alvarezii might have the potential as a prebiotic ingredient.


Asunto(s)
Colon/fisiología , Prebióticos , Rhodophyta , Algas Marinas , Bifidobacterium , Fermentación , Humanos , Inulina , Modelos Biológicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA