Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
J Neuroophthalmol ; 43(3): 364-369, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-36728631

RESUMEN

BACKGROUND: Long-duration spaceflight crewmembers are at risk for spaceflight-associated neuro-ocular syndrome (SANS). One of the earliest manifestations of SANS is optic disc edema (ODE), which could be missed using the subjective Frisén scale. The primary objective of this study is to determine the inter-rater and intrarater reliability of Frisén grade for SANS-induced ODE among a trained observer cohort. The secondary objective is to propose a standardized evaluation process for SANS-induced ODE across International Space Station Partner Agencies. METHODS: Retrospective, double-blinded diagnostic study. Preflight and postflight fundus photographs were presented to subject matter experts who identified and graded ODE. Pairs of images were also compared side-by-side for disc ranking. Grader concordance was assessed for Frisén grading and disc ranking. RESULTS: Expert graders identified Grade 1 ODE in 17.35% of images from 62 crewmembers (9 female, mean [SD] age, 47.81 [5.19] years). Grades 2 and 3 were identified less than 2% of the time. Concordance in Frisén grades among pairs of graders was 70.99%. Graders identified a difference in preflight and postflight fundus photographs 17.21% of the time when using disc ranking. Pairs of graders had complete concordance in disc ranking 79.79% of the time. Perfect intrarater agreement between Frisén grade and disc ranking occurred 77.7% of the time. CONCLUSIONS: These findings demonstrate intergrader and intragrader variability when using the Frisén scale to identify SANS-induced ODE, which is typically milder in presentation than terrestrial cases of idiopathic intracranial hypertension. It is possible to miss early ODE on fundoscopy alone, making it insufficient as a sole criterion for the diagnosis of SANS. A more sensitive and objective method of surveillance is necessary to monitor international crewmembers for ODE, perhaps using a multimodal approach that includes technology such as optical coherence tomography.


Asunto(s)
Disco Óptico , Papiledema , Vuelo Espacial , Humanos , Femenino , Persona de Mediana Edad , Papiledema/diagnóstico , Papiledema/etiología , Disco Óptico/diagnóstico por imagen , Estudios Retrospectivos , Reproducibilidad de los Resultados , Fotograbar/métodos
2.
Neuroophthalmology ; 45(1): 29-35, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33762785

RESUMEN

Posterior globe flattening has been well-documented in astronauts both during and after long-duration space flight (LDSF) and has been observed as early as 10 days into a mission on the International Space Station. Globe flattening (GF) is thought to be caused by the disc centred anterior forces created by elevated volume and/or pressure within the optic nerve sheath (ONS). This might be the result of increased intracranial pressure, increased intraorbital ONS pressure from compartmentalisation or a combination of these mechanisms. We report posterior GF in three astronauts that has persisted for 7 years or more following their return from LDSFs suggesting that permanent scleral remodelling may have occurred.

3.
J Neuroimaging ; 28(3): 256-268, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29460455

RESUMEN

BACKGROUND AND PURPOSE: As part of its technological sophistication, the International Space Station (ISS) Program operates a robust medical surveillance schedule for its rotating 6-person crew to control the known health risks and to address knowledge gaps related to human health in space flight environment. Recent evidence on visual impairment in a subset of ISS crew has renewed the interest in the effects of long-duration space flight on the central nervous system (CNS). Through retrospective analysis in a sample of 10 healthy astronauts, we demonstrate the utility of multimodal quantitative magnetic resonance imaging (qMRI) with diffusion tensor imaging (DTI)-based customized brain templates to examine the structural attributes of various CNS compartments in this occupational group. METHODS: The study included 10 healthy astronauts (45-55 years). All subjects had previous space flights with the median duration of 110 days. Multimodal quantitative structural imaging modalities performed and used in analyses. RESULTS: A host of CNS features are presented, which are largely commensurate with the available normative data. Remarkably, some of our findings demonstrate statistically significant positive features suggestive of structural neuroplasticity conceivably associated with the professional activities of astronauts, and compensatory neurogenesis that counterweighs the expected normative volume loss with age. CONCLUSIONS: The novelty of this exploratory report is in the demonstration of a qMRI toolset as a potential capability for characterization and surveillance of unique professional groups, and for future prospective examinations of the effects of various long-term exposures on CNS.


Asunto(s)
Astronautas , Encéfalo/diagnóstico por imagen , Imagen de Difusión Tensora , Imagen por Resonancia Magnética , Vuelo Espacial , Humanos , Persona de Mediana Edad
4.
J Ultrasound Med ; 37(4): 987-999, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28960477

RESUMEN

OBJECTIVES: Back pain is one of the most common conditions of astronauts during spaceflight and is hypothesized to be attributed to pathologic anatomic changes. Ultrasound (US) represents the only available imaging modality on the International Space Station, but a formal US protocol for imaging the structures of the spinal column does not exist. This investigation developed a method of acquiring diagnostic-quality images of the anterior lumbar and cervical regions of the spine during long-duration spaceflight. METHODS: Comprehensive spinal US examinations were conducted on 7 long-duration spaceflight astronauts before flight, in flight, and after flight and compared to preflight and postflight magnetic resonance imaging data. In-flight scans were conducted after just-in-time training assisted by remote expert tele-US guidance. RESULTS: Novice users were able to obtain diagnostic-quality spinal images with a 92.5% success rate. Thirty-three anomalous or pathologic findings were identified during the preflight US analysis, and at least 14 new findings or progressions were identified during the postflight US analysis. Common findings included disk desiccation, osteophytes, and qualitative changes in the intervertebral disk height and angle. CONCLUSIONS: Ultrasound has proven efficacy as a portable and versatile diagnostic imaging modality under austere conditions. We demonstrated a potential role for US to evaluate spinal integrity and alterations in the extreme environment of space on the International Space Station. Further investigations should be performed to corroborate this imaging technique and to create a larger database related to in-flight spinal conditions during long-duration spaceflight.


Asunto(s)
Astronautas , Vuelo Espacial , Enfermedades de la Columna Vertebral/diagnóstico por imagen , Columna Vertebral/anatomía & histología , Columna Vertebral/diagnóstico por imagen , Ultrasonografía/métodos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Factores de Tiempo
5.
Aerosp Med Hum Perform ; 89(1): 32-40, 2018 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-29233242

RESUMEN

BACKGROUND: Back pain is a common complaint during spaceflight that is commonly attributed to intervertebral disc swelling in microgravity. Ultrasound (US) represents the only imaging modality on the International Space Station (ISS) to assess its etiology. The present study investigated: 1) The agreement and correlation of spinal US assessments as compared to results of pre- and postflight MRI studies; and 2) the trend in intervertebral disc characteristics over the course of spaceflight to ISS. METHODS: Seven ISS astronauts underwent pre- and postflight US examinations that included anterior disc height and anterior intervertebral angles with comparison to pre- and postflight MRI results. In-flight US images were analyzed for changes in disc height and angle. Statistical analysis included repeated measures ANOVA with Bonferroni post hoc analysis, Bland-Altman plots, and Pearson correlation. RESULTS: Bland-Altman plots revealed significant disagreement between disc heights and angles for MRI and US measurements while significant Pearson correlations were found in MRI and US measurements for lumbar disc height (r2 = 0.83) and angle (r2 = 0.89), but not for cervical disc height (r2 = 0.26) or angle (r2 = 0.02). Changes in anterior intervertebral disc angle-initially increases followed by decreases-were observed in the lumbar and cervical spine over the course of the long-duration mission. The cervical spine demonstrated a loss of total disc height during in-flight assessments (∼0.5 cm). DISCUSSION: Significant disagreement but significant correlation was noted between US and MRI measurements of disc height and angle. Consistency in imaging modality is important for trending measurements and more research related to US technique is required.Harrison MF, Garcia KM, Sargsyan AE, Ebert D, Riascos-Castaneda RF, Dulchavsky SA. Preflight, in-flight, and postflight imaging of the cervical and lumbar spine in astronauts. Aerosp Med Hum Perform. 2018; 89(1):32-40.


Asunto(s)
Medicina Aeroespacial , Dolor de Espalda/diagnóstico por imagen , Vértebras Cervicales/diagnóstico por imagen , Vértebras Lumbares/diagnóstico por imagen , Vuelo Espacial , Adulto , Astronautas , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Ultrasonografía
6.
Aerosp Med Hum Perform ; 89(1): 63-65, 2018 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-29233246

RESUMEN

BACKGROUND: The purpose of this paper is to report the first use of an intraocular lens (IOL) in an astronaut during long duration spaceflight (LDSF). An astronaut developed a unilateral cataract and underwent phacoemulsification with insertion of an acrylic IOL. Approximately 15 mo later he flew on a Soyuz spacecraft to the International Space Station (ISS), where he successfully completed a 6-mo mission. CASE REPORT: Ocular examination, including ultrasound (US), was performed before, during, and after his mission and he was questioned regarding visual changes during each portion of his flight. DISCUSSION: We documented no change in IOL position during his space mission. This astronaut reported excellent and stable vision during liftoff, entry into microgravity (MG), 6 mo on the ISS, descent, and landing. Our results suggest that modern IOLs are stable, effective, and well tolerated during LDSF.Mader TH, Gibson CR, Schmid JF, Lipsky W, Sargsyan AE, Garcia K, Williams JN. Intraocular lens use in an astronaut during long duration spaceflight. Aerosp Med Hum Perform. 2018; 89(1):63-65.


Asunto(s)
Astronautas , Lentes Intraoculares , Vuelo Espacial , Medicina Aeroespacial , Humanos , Masculino , Persona de Mediana Edad , Facoemulsificación
8.
J Appl Physiol (1985) ; 122(5): 1155-1166, 2017 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-28209740

RESUMEN

To improve the pathophysiological understanding of visual changes observed in astronauts, we aimed to use quantitative MRI to measure anatomic and physiological responses during a ground-based spaceflight analog (head-down tilt, HDT) combined with increased ambient carbon dioxide (CO2). Six healthy, male subjects participated in the double-blinded, randomized crossover design study with two conditions: 26.5 h of -12° HDT with ambient air and with 0.5% CO2, both followed by 2.5-h exposure to 3% CO2 Volume and mean diffusivity quantification of the lateral ventricle and phase-contrast flow sequences of the internal carotid arteries and cerebral aqueduct were acquired at 3 T. Compared with supine baseline, HDT (ambient air) resulted in an increase in lateral ventricular volume (P = 0.03). Cerebral blood flow, however, decreased with HDT in the presence of either ambient air or 0.5% CO2 (P = 0.002 and P = 0.01, respectively); this was partially reversed by acute 3% CO2 exposure. Following HDT (ambient air), exposure to 3% CO2 increased aqueductal cerebral spinal fluid velocity amplitude (P = 0.01) and lateral ventricle cerebrospinal fluid (CSF) mean diffusivity (P = 0.001). We concluded that HDT causes alterations in cranial anatomy and physiology that are associated with decreased craniospinal compliance. Brief exposure to 3% CO2 augments CSF pulsatility within the cerebral aqueduct and lateral ventricles.NEW & NOTEWORTHY Head-down tilt causes increased lateral ventricular volume and decreased cerebrovascular flow after 26.5 h. Additional short exposure to 3% ambient carbon dioxide levels causes increased cerebrovascular flow associated with increased cerebrospinal fluid pulsatility at the cerebral aqueduct. Head-down tilt with chronically elevated 0.5% ambient carbon dioxide and acutely elevated 3% ambient carbon dioxide causes increased mean diffusivity of cerebral spinal fluid within the lateral ventricles.


Asunto(s)
Circulación Cerebrovascular/fisiología , Inclinación de Cabeza/fisiología , Hipercapnia/fisiopatología , Adulto , Dióxido de Carbono , Arterias Carótidas/fisiología , Líquido Cefalorraquídeo/fisiología , Estudios Cruzados , Método Doble Ciego , Humanos , Hidrodinámica , Imagen por Resonancia Magnética/métodos , Masculino , Vuelo Espacial/métodos
9.
J Neuroophthalmol ; 37(2): 133-139, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-27930421

RESUMEN

BACKGROUND: Several ophthalmic findings including optic disc swelling, globe flattening and choroidal folds have been observed in astronauts following long-duration space flight. The authors now report asymmetric choroidal expansion, disc swelling and optic disc morphologic changes in a 45-year-old astronaut which occurred during long-duration space flight and persisted following his space mission. METHODS: Case study of ocular findings in an astronaut documented during and after a long-duration space flight of approximately 6 months. Before, during and after his spaceflight, he underwent complete eye examination, including fundus photography, ultrasound, and optical coherence tomography. RESULTS: We documented asymmetric choroidal expansion inflight that largely resolved by 30 days postflight, asymmetric disc swelling observed inflight that persisted for over 180 days postflight, asymmetric optic disc morphologic changes documented inflight by OCT that persisted for 630 days postflight and asymmetric globe flattening that began inflight and continued 660 days postflight. Lumbar puncture opening pressures obtained at 7 and 365 days post-mission were 22 and 16 cm H20 respectively. CONCLUSION: The persistent asymmetric findings noted above, coupled with the lumbar puncture opening pressures, suggest that prolonged microgravity exposure may have produced asymmetric pressure changes within the perioptic subarachnoid space.


Asunto(s)
Astronautas , Presión Intracraneal/fisiología , Disco Óptico/patología , Papiledema/etiología , Vuelo Espacial , Tomografía de Coherencia Óptica/métodos , Humanos , Masculino , Persona de Mediana Edad , Papiledema/diagnóstico , Factores de Tiempo
10.
J Magn Reson Imaging ; 42(6): 1560-71, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25920095

RESUMEN

PURPOSE: To quantify the change in cerebral spinal fluid (CSF) production rate and maximum systolic velocity in astronauts before and after exposure to microgravity and identify any physiologic trend and/or risk factor related to intracranial hypertension. MATERIALS AND METHODS: Following Institutional Review Board (IRB) approval, with waiver of informed consent, a retrospective review of 27 astronauts imaged at 3T was done. Qualitative analysis was performed on T2 -weighted axial images through the orbits for degree of flattening of the posterior globe according to the following grades: 0 = none, 1 = mild, 2 = moderate, and 3 = severe. One grade level change postflight was considered significant for exposure to intracranial hypertension. CSF production rate and maximum systolic velocity was calculated from cine phase-contrast magnetic resonance imaging and compared to seven healthy controls. RESULTS: Fourteen astronauts were studied. The preflight CSF production rate in astronauts was similar to controls (P = 0.83). Six astronauts with significant posterior globe flattening demonstrated a 70% increase in CSF production rate postflight compared to baseline (P = 0.01). There was a significant increase in CSF maximum systolic velocity in the subgroup without posterior globe flattening (P = 0.01). CONCLUSION: The increased postflight CSF production rate in astronauts with positive flattening is compatible with the hypothesis of microgravity-induced intracranial hypertension inferring downregulation in CSF production in microgravity that is upregulated upon return to normal gravity. Increased postflight CSF maximum systolic velocity in astronauts with negative flattening suggests increased craniospinal compliance and a potential negative risk factor to microgravity-induced intracranial hypertension.


Asunto(s)
Astronautas , Líquido Cefalorraquídeo/fisiología , Hipertensión Intracraneal/etiología , Hipertensión Intracraneal/patología , Imagen por Resonancia Magnética/métodos , Ingravidez/efectos adversos , Biomarcadores/líquido cefalorraquídeo , Líquido Cefalorraquídeo/citología , Método Doble Ciego , Humanos , Hidrodinámica , Hipertensión Intracraneal/líquido cefalorraquídeo , Presión Intracraneal , Masculino , Persona de Mediana Edad
11.
Aviat Space Environ Med ; 85(1): 50-4, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24479259

RESUMEN

BACKGROUND: Ultrasound (U/S) and MRI measurements of the optic nerve sheath diameter (ONSD) have been proposed as intracranial pressure measurement surrogates, but these methods have not been fully evaluated or standardized. The purpose of this study was to develop an ex-vivo model for evaluating ONSD measurement techniques by comparing U/S and MRI measurements to physical measurements. METHODS: The left eye of post mortem juvenile pigs (N = 3) was excised and the subdural space of the optic nerve cannulated. Caliper measurements and U/S imaging measurements of the ONSD were acquired at baseline and following 1 cc saline infusion into the sheath. The samples were then embedded in 0.5% agarose and imaged in a 7 Tesla (7T) MRI. The ONSD was subsequently measured with digital calipers at locations and directions matching the U/S and direct measurements. RESULTS: Both MRI and sonographic measurements were in agreement with direct measurements. U/S data, especially axial images, exhibited a positive bias and more variance (bias: 1.318, 95% limit of agreement: 8.609) compared to MRI (bias: 0.3156, 95% limit of agreement: 2.773). In addition, U/S images were much more dependent on probe placement, distance between probe and target, and imaging plane. CONCLUSIONS: This model appears to be a valid test-bed for continued scrutiny of ONSD measurement techniques. In this model, 7T MRI was accurate and potentially useful for in-vivo measurements where direct measurements are not available. Current limitations with ultrasound imaging for ONSD measurement associated with image acquisition technique and equipment necessitate further standardization to improve its clinical utility.


Asunto(s)
Nervio Óptico/anatomía & histología , Animales , Técnicas In Vitro , Presión Intracraneal , Imagen por Resonancia Magnética , Modelos Animales , Nervio Óptico/diagnóstico por imagen , Instrumentos Quirúrgicos , Porcinos , Ultrasonografía
12.
J Emerg Med ; 46(1): 61-70, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24135505

RESUMEN

BACKGROUND: Changes in the lumbar and sacral spine occur with exposure to microgravity in astronauts; monitoring these alterations without radiographic capabilities on the International Space Station (ISS) requires novel diagnostic solutions to be developed. STUDY OBJECTIVES: We evaluated the ability of point-of-care ultrasound, performed by nonexpert-operator astronauts, to provide accurate anatomic information about the spine in long-duration crewmembers in space. METHODS: Astronauts received brief ultrasound instruction on the ground and performed in-flight cervical and lumbosacral ultrasound examinations using just-in-time training and remote expert tele-ultrasound guidance. Ultrasound examinations on the ISS used a portable ultrasound device with real-time communication/guidance with ground experts in Mission Control. RESULTS: The crewmembers were able to obtain diagnostic-quality examinations of the cervical and lumbar spine that would provide essential information about acute or chronic changes to the spine. CONCLUSIONS: Spinal ultrasound provides essential anatomic information in the cervical and lumbosacral spine; this technique may be extensible to point-of-care situations in emergency departments or resource-challenged areas without direct access to additional radiologic capabilities.


Asunto(s)
Vértebras Cervicales/diagnóstico por imagen , Vértebras Lumbares/diagnóstico por imagen , Sistemas de Atención de Punto , Sacro/diagnóstico por imagen , Vuelo Espacial , Ingravidez/efectos adversos , Educación no Profesional , Humanos , Masculino , Persona de Mediana Edad , Consulta Remota , Ultrasonografía/métodos
13.
J Neuroophthalmol ; 33(3): 249-55, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23851997

RESUMEN

BACKGROUND: A number of ophthalmic findings including optic disc edema, globe flattening, and choroidal folds have been observed in several astronauts after long-duration space flights. The authors report the first astronaut with previously documented postflight ophthalmic abnormalities who developed new pathological changes after a repeat long-duration mission. METHODS: A case study of an astronaut with 2 long-duration (6 months) exposures to microgravity. Before and after his first long-duration space flight, he underwent complete eye examination, including fundus photography. Before and after his second flight, 9 years later, he underwent fundus photography, optical coherence tomography, ocular ultrasonography, and brain magnetic resonance imaging, as well as in-flight fundus photography and ultrasound. RESULTS: After his first long-duration mission, the astronaut was documented to have eye findings limited to unilateral choroidal folds and a single cotton wool spot. During a subsequent 6-month mission, he developed more widespread choroidal folds and new onset of optic disc edema in the same eye. CONCLUSION: Microgravity-induced anatomical changes that occurred during the first mission may have set the stage for recurrent or additional changes when the astronaut was subjected to physiological stress of repeat space flight.


Asunto(s)
Astronautas , Papiledema/etiología , Vuelo Espacial , Ingravidez/efectos adversos , Humanos , Masculino , Persona de Mediana Edad
14.
Telemed J E Health ; 19(7): 530-4, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23682590

RESUMEN

Modern medical practice has become extremely dependent upon diagnostic imaging technologies to confirm the results of clinical examination and to guide the response to therapies. Of the various diagnostic imaging techniques, ultrasound is the most portable modality and one that is repeatable, dynamic, relatively cheap, and safe as long as the imaging provided is accurately interpreted. It is, however, the most user-dependent, a characteristic that has prompted the development of remote guidance techniques, wherein remote experts guide distant users through the use of information technologies. Medical mission work often brings specialist physicians to less developed locations, where they wish to provide the highest levels of care but are often bereft of diagnostic imaging resources on which they depend. Furthermore, if these personnel become ill or injured, their own care received may not be to the standard they have left at home. We herein report the utilization of a compact hand-carried remote tele-ultrasound system that allowed real-time diagnosis and follow-up of an acutely torn adductor muscle by a team of ultrasonographers, surgeons, and physicians. The patient was one of the mission surgeons who was guided to self-image. The virtual network of supporting experts was located across North America, whereas the patient was in Lome, Togo, West Africa. The system consisted of a hand-carried ultrasound, the output of which was digitized and streamed to the experts within standard voice-over-Internet-protocol software with an embedded simultaneous videocamera image of the ultrasonographer's hands using a customized graphical user interface. The practical concept of a virtual tele-ultrasound support network was illustrated through the clinical guidance of multiple physicians, including National Aeronautics and Space Administration Medical Operations remote guiders, Olympic team-associated surgeons, and ultrasound-focused emergentologists.


Asunto(s)
Enfermedades Musculoesqueléticas/diagnóstico por imagen , Sistemas de Atención de Punto , Misiones Religiosas , Consulta Remota/instrumentación , Telemedicina/instrumentación , Hockey/lesiones , Humanos , Masculino , Persona de Mediana Edad , Togo , Ultrasonografía/instrumentación , Estados Unidos
16.
Aviat Space Environ Med ; 83(10): 995-1000, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23066623

RESUMEN

INTRODUCTION: With missions planned to travel greater distances from Earth at ranges that make real-time two-way communication impractical, astronauts will be required to perform autonomous medical diagnostic procedures during future exploration missions. Virtual guidance is a form of just-in-time training developed to allow novice ultrasound operators to acquire diagnostically-adequate images of clinically relevant anatomical structures using a prerecorded audio/visual tutorial viewed in real-time. METHODS: Individuals without previous experience in ultrasound were recruited to perform carotid artery (N = 10) and ophthalmic (N = 9) ultrasound examinations using virtual guidance as their only training tool. In the carotid group, each untrained operator acquired two-dimensional, pulsed and color Doppler of the carotid artery. In the ophthalmic group, operators acquired representative images of the anterior chamber of the eye, retina, optic nerve, and nerve sheath. Ultrasound image quality was evaluated by independent imaging experts. RESULTS: Of the studies, 8 of the 10 carotid and 17 of 18 of the ophthalmic images (2 images collected per study) were judged to be diagnostically adequate. The quality of all but one of the ophthalmic images ranged from adequate to excellent. DISCUSSION: Diagnostically-adequate carotid and ophthalmic ultrasound examinations can be obtained by previously untrained operators with assistance from only an audio/video tutorial viewed in real time while scanning. This form of just-in-time training, which can be applied to other examinations, represents an opportunity to acquire important information for NASA flight surgeons and researchers when trained medical personnel are not available or when remote guidance is impractical.


Asunto(s)
Medicina Aeroespacial/educación , Astronautas/educación , Arterias Carótidas/diagnóstico por imagen , Educación Médica/métodos , Ojo/diagnóstico por imagen , Bibliotecas Digitales , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Vuelo Espacial , Ultrasonografía Doppler en Color , Ultrasonografía Doppler de Pulso
17.
Radiology ; 263(3): 819-27, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22416248

RESUMEN

PURPOSE: To identify intraorbital and intracranial abnormalities in astronauts previously exposed to microgravity by using quantitative and qualitative magnetic resonance (MR) techniques. MATERIALS AND METHODS: The institutional review board approved this HIPAA-compliant, retrospective review and waived the requirement for informed consent. Twenty-seven astronauts (mean age ± standard deviation, 48 years ± 4.5) underwent 3-T MR imaging with use of thin-section, three-dimensional, axial T2-weighted orbital and conventional brain sequences. Eight astronauts underwent repeat imaging after an additional mission in space. Optic nerve sheath diameter (ONSD) and optic nerve diameter (OND) were quantified in the retrolaminar optic nerve. OND and central optic nerve T2 hyperintensity were quantified at mid orbit. Qualitative analysis of the optic nerve sheath, optic disc, posterior globe, and pituitary gland morphology was performed and correlated for association with intracranial evidence of hydrocephalus, vasogenic edema, central venous thrombosis, and/or mass lesion. Statistical analyses included the paired t test, Mann-Whitney nonparametric test for group comparisons, Cronbach α coefficient for reproducibility, and Pearson correlation coefficient. RESULTS: All astronauts had previous exposure to microgravity and, thus, control data were not available for comparison. The ONSD and OND ranged from 4.7 to 10.8 mm (mean, 6.2 mm ± 1.1) and from 2.4 to 4.5 mm (mean, 3.0 mm ± 0.5), respectively. Posterior globe flattening was seen in seven of the 27 astronauts (26%), optic nerve protrusion in four (15%), and moderate concavity of the pituitary dome with posterior stalk deviation in three (11%) without additional intracranial abnormalities. Retrolaminar OND increased linearly relative to ONSD (r = 0.797, Pearson correlation). A central area of T2 hyperintensity was identifiable in 26 of the 27 astronauts (96%) and increased in diameter in association with kinking of the optic nerve sheath. CONCLUSION: Exposure to microgravity can result in a spectrum of intraorbital and intracranial findings similar to those in idiopathic intracranial hypertension.


Asunto(s)
Astronautas , Encefalopatías/diagnóstico , Imagen por Resonancia Magnética/métodos , Nervio Óptico/patología , Órbita/patología , Hipófisis/patología , Ingravidez , Encefalopatías/patología , Humanos , Presión Intracraneal/fisiología , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Estadísticas no Paramétricas
18.
J Appl Physiol (1985) ; 112(3): 454-62, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21903875

RESUMEN

BACKGROUND: The transition to microgravity eliminates the hydrostatic gradients in the vascular system. The resulting fluid redistribution commonly manifests as facial edema, engorgement of the external neck veins, nasal congestion, and headache. This experiment examined the responses to modified Valsalva and Mueller maneuvers measured by cardiac and vascular ultrasound (ECHO) in a baseline steady state and under the influence of thigh occlusion cuffs available as a countermeasure device (Braslet cuffs). METHODS: Nine International Space Station crewmember subjects (expeditions 16-20) were examined in 15 experiment sessions 101 ± 46 days after launch (mean ± SD; 33-185). Twenty-seven cardiac and vascular parameters were obtained with/without respiratory maneuvers before and after tightening of the Braslet cuffs (162 parameter states/session). Quality of cardiac and vascular ultrasound examinations was assured through remote monitoring and guidance by investigators from the NASA Telescience Center in Houston, TX, and the Mission Control Center in Korolyov, Moscow region, Russia. RESULTS: 14 of 81 conditions (27 parameters measured at baseline, Valsalva, and Mueller maneuver) were significantly different when the Braslet was applied. Seven of 27 parameters were found to respond differently to respiratory maneuvers depending on the presence or absence of thigh compression. CONCLUSIONS: Acute application of Braslet occlusion cuffs causes lower extremity fluid sequestration and exerts commensurate measurable effects on cardiac performance in microgravity. Ultrasound techniques to measure the hemodynamic effects of thigh cuffs in combination with respiratory maneuvers may serve as an effective tool in determining the volume status of a cardiac or hemodynamically compromised patient at the "microgravity bedside."


Asunto(s)
Adaptación Fisiológica/fisiología , Sistema Cardiovascular/fisiopatología , Sistema Respiratorio/fisiopatología , Vuelo Espacial , Muslo/irrigación sanguínea , Ingravidez , Sistema Cardiovascular/diagnóstico por imagen , Hemodinámica/fisiología , Humanos , Ultrasonografía , Medidas contra la Ingravidez , Simulación de Ingravidez/métodos
19.
Echocardiography ; 28(5): 491-501, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21535119

RESUMEN

OBJECTIVES: A prospective trial of echocardiography was conducted on six crew members onboard the International Space Station. The main objective was to determine the efficacy of remotely guided tele-echocardiography, including just-in-time e-training methods and determine what is "space normal" echocardiographic data. METHODS: Each crew member operator (n = 6) had 2-hour preflight training. Baseline echocardiographic data were collected 55-167 days preflight. Similar equipment was used in each 60-minute in-flight session (mean microgravity exposure--114 days [34--190]). On-orbit ultrasound (US) operators used an e-learning system within 24 hours of these sessions. Expert assistance was provided using US video downlink and two-way voice. Testing was repeated 5-16 days after landing. Separate ANOVA was used on each echocardiographic variable (n = 33). Within each ANOVA, three tests were made: (a) effect of mission phase (preflight, in-flight, postflight); (b) effect of echo technician (two technicians independently analyzed the data); (c) interaction between mission phase and technician. RESULTS: Eleven rejections of the null hypothesis (mission phase or technician or both had no effect) were found that could be considered for possible follow up. Of these, eight rejections were for significant technician effects, not space flight. Three rejections of the null hypothesis (aortic valve time velocity integral, mitral E-wave velocity, and heart rate) were attributable to space flight but determine to not be clinically significant. No rejections were due to the interaction between technician and space flight. CONCLUSION: Thus, we found no consistent clinically significant effects of long-duration space flight on echocardiographic variables of the given group of subjects.


Asunto(s)
Astronautas , Ecocardiografía/métodos , Nave Espacial , Telemedicina/métodos , Femenino , Humanos , Masculino
20.
J Ultrasound Med ; 30(5): 651-9, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21527613

RESUMEN

OBJECTIVES: This study investigated whether it is feasible to use sonography to monitor changes in the optic nerve sheath diameter in a porcine model. METHODS: A fiber-optic intracranial pressure transducer was surgically placed through the frontal sinus directly into the brain parenchyma of adult Yorkshire pigs (n = 5). A second bolt was placed on the contralateral side for intraparenchymal fluid infusion. Optic nerve sheath diameter measurements were acquired by each of 2 ultrasound operators around the leading edge of the nerve, 3 to 5 mm distal from the origin of the optic nerve. To induce a change in diameter, intracranial pressure was manipulated by injecting normal saline into the intraparenchymal infusion catheter located in the symmetric contralateral position as the pressure-monitoring probe. RESULTS: Data from 1 pig were unusable because of a cerebrospinal fluid leak into the sinus and orbital fissure. Saline aliquots of 1 to 10 mL were able to generate intracranial pressures typically starting from 10 to 15 mm Hg and increasing to 75 to 90 mm Hg, which eventually evoked a Cushing response. Fluid injection was controlled to increase pressures by 60 mm Hg over a 15- to 20-minute period. Regression analysis of all animals showed that the optic nerve sheath diameter increased by 0.0034 mm/mm Hg of intracranial pressure; however, this slope ranged from 0.0025 to 0.0046, depending on the animal measured. There was no discernible effect of the ultrasound operator on the slope; however, measurements made by 1 operator were consistently higher than the others by about 8% of the overall diameter range. CONCLUSIONS: These results suggest that the use of the optic nerve sheath diameter to noninvasively confirm acute changes in intracranial pressure over 1 hour is feasible in a porcine model. We recommend that this method be validated in humans using direct intracranial pressure measurement where possible to confirm it as a screening tool for acute and chronically increased diameters secondary to elevated pressure in clinical settings.


Asunto(s)
Modelos Animales de Enfermedad , Interpretación de Imagen Asistida por Computador/métodos , Hipertensión Intracraneal/diagnóstico por imagen , Presión Intracraneal , Nervio Óptico/diagnóstico por imagen , Animales , Femenino , Humanos , Aumento de la Imagen/métodos , Hipertensión Intracraneal/fisiopatología , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Porcinos , Ultrasonografía/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...