Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
EJNMMI Res ; 14(1): 33, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38558200

RESUMEN

BACKGROUND: Accurate measurement of the arterial input function (AIF) is crucial for parametric PET studies, but the AIF is commonly derived from invasive arterial blood sampling. It is possible to use an image-derived input function (IDIF) obtained by imaging a large blood pool, but IDIF measurement in PET brain studies performed on standard field of view scanners is challenging due to lack of a large blood pool in the field-of-view. Here we describe a novel automated approach to estimate the AIF from brain images. RESULTS: Total body 18F-FDG PET data from 12 subjects were split into a model adjustment group (n = 6) and a validation group (n = 6). We developed an AIF estimation framework using wavelet-based methods and unsupervised machine learning to distinguish arterial and venous activity curves, compared to the IDIF from the descending aorta. All of the automatically extracted AIFs in the validation group had similar shape to the IDIF derived from the descending aorta IDIF. The average area under the curve error and normalised root mean square error across validation data were - 1.59 ± 2.93% and 0.17 ± 0.07. CONCLUSIONS: Our automated AIF framework accurately estimates the AIF from brain images. It reduces operator-dependence, and could facilitate the clinical adoption of parametric PET.

2.
J Nucl Med ; 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38604759

RESUMEN

The purpose of this study was to examine a nonparametric approach to mapping kinetic parameters and their uncertainties with data from the emerging generation of dynamic whole-body PET/CT scanners. Methods: Dynamic PET 18F-FDG data from a set of 24 cancer patients studied on a long-axial-field-of-view PET/CT scanner were considered. Kinetics were mapped using a nonparametric residue mapping (NPRM) technique. Uncertainties were evaluated using an image-based bootstrapping methodology. Kinetics and bootstrap-derived uncertainties are reported for voxels, maximum-intensity projections, and volumes of interest (VOIs) corresponding to several key organs and lesions. Comparisons between NPRM and standard 2-compartment (2C) modeling of VOI kinetics are carefully examined. Results: NPRM-generated kinetic maps were of good quality and well aligned with vascular and metabolic 18F-FDG patterns, reasonable for the range of VOIs considered. On a single 3.2-GHz processor, the specification of the bootstrapping model took 140 min; individual bootstrap replicates required 80 min each. VOI time-course data were much more accurately represented, particularly in the early time course, by NPRM than by 2C modeling constructs, and improvements in fit were statistically highly significant. Although 18F-FDG flux values evaluated by NPRM and 2C modeling were generally similar, significant deviations between vascular blood and distribution volume estimates were found. The bootstrap enables the assessment of quite complex summaries of mapped kinetics. This is illustrated with maximum-intensity maps of kinetics and their uncertainties. Conclusion: NPRM kinetics combined with image-domain bootstrapping is practical with large whole-body dynamic 18F-FDG datasets. The information provided by bootstrapping could support more sophisticated uses of PET biomarkers used in clinical decision-making for the individual patient.

3.
Sci Total Environ ; 925: 171718, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38490407

RESUMEN

Non-native species can lead to severe impacts on invaded ecosystems, including the decline of ecosystem function through deleterious impacts on species diversity. The successful establishment of non-native species in new environments is the first barrier a species must overcome, ultimately depending on its ability to either cope with or adapt to local site-specific conditions. Despite the widespread distribution and ecological consequences of many freshwater invaders, site-specific and climatic preferences are often unknown. This is also the case of the Eastern mosquitofish Gambusia holbrooki, a global invader considered as a pervasive threat to endemic species. Here, we determined the ecological features and preferred site-specific conditions of G. holbrooki in Türkiye, which spans a wide range of diverse biogeographically distinct ecosystems by surveying populations from 130 localities in 2016 and 2017. Gambusia holbrooki were detected by hand-net in 48 of these sites (19 lotic, 29 lentic). It showed a preference for shallow waters with medium sized rocks, and abundances differed spatially across a latitudinal gradient and was influenced predominantly by variations in pH. The only other factors predicting its presence were low current velocities and gravel substrate, highlighting its ecological versatility in utilising a wide range of microhabitats. Bioclimatic models suggest that G. holbrooki is found in areas with a wide average annual temperature ranging from 10 to 20 °C, but with temperature not being a limiting factor to its invasion. Gambusia holbrooki shows a preference for xeric freshwater ecosystems and endorheic basins, as well as temperate coastal rivers, temperate upland rivers, temperate floodplain rivers and wetlands, and tropical and subtropical coastal rivers. These results, particularly the wide occurrence with only few limiting factors, emphasise the invasion potential of mosquitofish and should substantiate the need for localised invasive species management and conservation efforts, particularly in smaller or insular areas where mosquitofish and endemic fish species co-exist.


Asunto(s)
Ciprinodontiformes , Ecosistema , Animales , Especies Introducidas , Ríos , Agua Dulce
4.
Artículo en Inglés | MEDLINE | ID: mdl-38407598

RESUMEN

PURPOSE: Long axial field-of-view (LAFOV) positron emission tomography (PET) systems allow to image all major organs with one bed position, which is particularly useful for acquiring whole-body dynamic data using short-lived radioisotopes like 82Rb. METHODS: We determined the absorbed dose in target organs of three subjects (29, 40, and 57 years old) using two different methods, i.e., MIRD and voxel dosimetry. The subjects were injected with 407.0 to 419.61 MBq of [82Rb]Cl and were scanned dynamically for 7 min with a LAFOV PET/CT scanner. RESULTS: Using the MIRD formalism and voxel dosimetry, the absorbed dose ranged from 1.84 to 2.78 µGy/MBq (1.57 to 3.92 µGy/MBq for voxel dosimetry) for the heart wall, 2.76 to 5.73 µGy/MBq (3.22 to 5.37 µGy/MBq for voxel dosimetry) for the kidneys, and 0.94 to 1.88 µGy/MBq (0.98 to 1.92 µGy/MBq for voxel dosimetry) for the lungs. The total body effective dose lied between 0.50 and 0.76 µSv/MBq. CONCLUSION: Our study suggests that the radiation dose associated with [82Rb]Cl PET/CT can be assessed by means of dynamic LAFOV PET and that it is lower compared to literature values.

5.
Artículo en Inglés | MEDLINE | ID: mdl-38347299

RESUMEN

PURPOSE: Evaluation of 90Y liver radioembolization post-treatment clinical data using a whole-body Biograph Vision Quadra PET/CT to investigate the potential of protocol optimization in terms of scan time and dosimetry. METHODS: 17 patients with hepatocellular carcinoma with median (IQR) injected activity 2393 (1348-3298) MBq were included. Pre-treatment dosimetry plan was based on 99mTc-MAA SPECT/CT with Simplicit90Y™ and post-treatment validation with Quadra using Simplicit90Y™ and HERMIA independently. Regarding the image analysis, mean and peak SNR, the coefficient of variation (COV) and lesion-to-background ratio (LBR) were evaluated. For the post-treatment dosimetry validation, the mean tumor, whole liver and lung absorbed dose evaluation was performed using Simplicit90Y and HERMES. Images were reconstructed with 20-, 15-, 10-, 5- and 1- min sinograms with 2, 4, 6 and 8 iterations. Wilcoxon signed rank test was used to show statistical significance (p < 0.05). RESULTS: There was no difference of statistical significance between 20- and 5- min reconstructed times for the peak SNR, COV and LBR. In addition, there was no difference of statistical significance between 20- and 1- min reconstructed times for all dosimetry metrics. Lung dosimetry showed consistently lower values than the expected. Tumor absorbed dose based on Simplicit90Y™ was similar to the expected while HERMES consistently underestimated significantly the measured tumor absorbed dose. Finally, there was no difference of statistical significance between expected and measured tumor, whole liver and lung dose for all reconstruction times. CONCLUSION: In this study we evaluated, in terms of image quality and dosimetry, whole-body PET clinical images of patients after having been treated with 90Y microspheres radioembolization for liver cancer. Compared to the 20-min standard scan, the simulated 5-min reconstructed images provided equal image peak SNR and noise behavior, while performing also similarly for post-treatment dosimetry of tumor, whole liver and lung absorbed doses.

6.
Artículo en Inglés | MEDLINE | ID: mdl-38383743

RESUMEN

PURPOSE: High blood glucose (hBG) in patients undergoing [18F]FDG PET/CT scans often results in rescheduling the examination, which may lead to clinical delay for the patient and decrease productivity for the department. The aim of this study was to evaluate whether long-axial field-of-view (LAFOV) PET/CT can minimize the effect of altered bio-distribution in hBG patients and is able to provide diagnostic image quality in hBG situations. MATERIALS AND METHODS: Oncologic patients with elevated blood glucose (≥ 8.0 mmol/l) and normal blood glucose (< 8.0 mmol/l, nBG) levels were matched for tumor entity, gender, age, and BMI. hBG patients were further subdivided into two groups (BG 8-11 mmol/l and BG > 11 mmol/l). Tracer uptake in the liver, muscle, and tumor was evaluated. Furthermore, image quality was compared between long acquisitions (ultra-high sensitivity mode, 360 s) on a LAFOV PET/CT and routine acquisitions equivalent to a short-axial field-of-view scanner (simulated (sSAFOV), obtained with high sensitivity mode, 120 s). Tumor-to-background ratio (TBR) and contrast-to-noise ratio (CNR) were used as the main image quality criteria. RESULTS: Thirty-one hBG patients met the inclusion criteria and were matched with 31 nBG patients. Overall, liver uptake was significantly higher in hBG patients (SUVmean, 3.07 ± 0.41 vs. 2.37 ± 0.33; p = 0.03), and brain uptake was significantly lower (SUVmax, 7.58 ± 0.74 vs. 13.38 ± 3.94; p < 0.001), whereas muscle (shoulder/gluteal) uptake showed no statistically significant difference. Tumor uptake was lower in hBG patients, resulting in a significantly lower TBR in the hBG cohort (3.48 ± 0.74 vs. 5.29 ± 1.48, p < 0.001). CNR was higher in nBG compared to hBG patients (12.17 ± 4.86 vs. 23.31 ± 12.22, p < 0.001). However, subgroup analysis of nBG 8-11 mmol/l on sSAFOV PET/CT compared to hBG (> 11 mmol/l) patients examined with LAFOV PET/CT showed no statistical significant difference in CNR (19.84 ± 8.40 vs. 17.79 ± 9.3, p = 0.08). CONCLUSION: While elevated blood glucose (> 11 mmol) negatively affected TBR and CNR in our cohort, the images from a LAFOV PET-scanner had comparable CNR to PET-images acquired from nBG patients using sSAFOV PET/CT. Therefore, we argue that oncologic patients with increased blood sugar levels might be imaged safely with LAFOV PET/CT when rescheduling is not feasible.

7.
EJNMMI Res ; 14(1): 10, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38289518

RESUMEN

BACKGROUND: The indirect method for generating parametric images in positron emission tomography (PET) involves the acquisition and reconstruction of dynamic images and temporal modelling of tissue activity given a measured arterial input function. This approach is not robust, as noise in each dynamic image leads to a degradation in parameter estimation. Direct methods incorporate into the image reconstruction step both the kinetic and noise models, leading to improved parametric images. These methods require extensive computational time and large computing resources. Machine learning methods have demonstrated significant potential in overcoming these challenges. But they are limited by the requirement of a paired training dataset. A further challenge within the existing framework is the use of state-of-the-art arterial input function estimation via temporal arterial blood sampling, which is an invasive procedure, or an additional magnetic resonance imaging (MRI) scan for selecting a region where arterial blood signal can be measured from the PET image. We propose a novel machine learning approach for reconstructing high-quality parametric brain images from histoimages produced from time-of-flight PET data without requiring invasive arterial sampling, an MRI scan, or paired training data from standard field-of-view scanners. RESULT: The proposed is tested on a simulated phantom and five oncological subjects undergoing an 18F-FDG-PET scan of the brain using Siemens Biograph Vision Quadra. Kinetic parameters set in the brain phantom correlated strongly with the estimated parameters (K1, k2 and k3, Pearson correlation coefficient of 0.91, 0.92 and 0.93) and a mean squared error of less than 0.0004. In addition, our method significantly outperforms (p < 0.05, paired t-test) the conventional nonlinear least squares method in terms of contrast-to-noise ratio. At last, the proposed method was found to be 37% faster than the conventional method. CONCLUSION: We proposed a direct non-invasive DL-based reconstruction method and produced high-quality parametric maps of the brain. The use of histoimages holds promising potential for enhancing the estimation of parametric images, an area that has not been extensively explored thus far. The proposed method can be applied to subject-specific dynamic PET data alone.

8.
Phys Med ; 118: 103296, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38281409

RESUMEN

PURPOSE: The physical properties of yttrium-90 (90Y) allow for imaging with positron emission tomography/computed tomography (PET/CT). The increased sensitivity of long axial field-of-view (LAFOV) PET/CT scanners possibly allows to overcome the small branching ratio for positron production from 90Y decays and to improve for the post-treatment dosimetry of 90Y of selective internal radiation therapy. METHODS: For the challenging case of an image quality body phantom, we compare a full Monte Carlo (MC) dose calculation with the results from the two commercial software packages Simplicit90Y and Hermes. The voxel dosimetry module of Hermes relies on the 90Y images taken with a LAFOV PET/CT, while the MC and Simplicit90Y dose calculations are image independent. RESULTS: The resulting doses from the MC calculation and Simplicit90Y agree well within the error margins. The image-based dose calculation with Hermes, however, consistently underestimates the dose. This is due to the mismatch of the activity distribution in the PET images and the size of the volume of interest. We found that only for the smallest phantom sphere there is a statistically significant dependence of the Hermes dose on the image reconstruction parameters and scan time. CONCLUSION: Our study shows that Simplicit90Y's local deposition model can provide a reliable dose estimate. On the other hand, the image based dose calculation suffers from the suboptimal reconstruction of the 90Y distribution in small structures.


Asunto(s)
Tomografía Computarizada por Tomografía de Emisión de Positrones , Radiometría , Hígado , Método de Montecarlo , Fantasmas de Imagen , Tomografía de Emisión de Positrones , Radiometría/métodos , Radioisótopos de Itrio
9.
Eur J Nucl Med Mol Imaging ; 51(5): 1436-1443, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38095670

RESUMEN

PURPOSE: To evaluate the utility of long duration (10 min) acquisitions compared to standard 4 min scans in the evaluation of head and neck cancer (HNC) using a long-axial field-of-view (LAFOV) system in 2-[18F]FDG PET/CT. METHODS: HNC patients undergoing LAFOV PET/CT were included retrospectively according to a predefined sample size calculation. For each acquisition, FDG avid lymph nodes (LN) which were highly probable or equivocal for malignancy were identified by two board certified nuclear medicine physicians in consensus. The aim of this study was to establish the clinical acceptability of short-duration (4 min, C40%) acquisitions compared to full-count (10 min, C100%) in terms of the detection of LN metastases in HNC. Secondary endpoints were the positive predictive value for LN status (PPV) and comparison of SUVmax at C40% and C100%. Histology reports or confirmatory imaging were the reference standard. RESULTS: A total of 1218 records were screened and target recruitment was met with n = 64 HNC patients undergoing LAFOV. Median age was 65 years (IQR: 59-73). At C40%, a total of 387 lesions were detected (highly probable LN n = 274 and equivocal n = 113. The total number of lesions detected at C100% acquisition was 439, of them 291 (66%) highly probable LN and 148 (34%) equivocal. Detection rate between the two acquisitions did not demonstrate any significant differences (Pearson's Chi-Square test, p = 0.792). Sensitivity, specificity, PPV, NPV and accuracy for C40% were 83%, 44%, 55%, 76% and 36%, whilst for C100% were 85%, 56%, 55%, 85% and 43%, respectively. The improved accuracy reached borderline significance (p = 0.057). At the ROC analysis, lower SUVmax was identified for C100% (3.5) compared to C40% (4.5). CONCLUSION: In terms of LN detection, C40% acquisitions showed no significant difference compared to the C100% acquisitions. There was some improvement for lesions detection at C100%, with a small increment in accuracy reaching borderline significance, suggestive that the higher sensitivity afforded by LAFOV might translate to improved clinical performance in some patients.


Asunto(s)
Neoplasias de Cabeza y Cuello , Tomografía Computarizada por Tomografía de Emisión de Positrones , Humanos , Anciano , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Fluorodesoxiglucosa F18 , Estudios Retrospectivos , Radiofármacos , Tomografía de Emisión de Positrones , Neoplasias de Cabeza y Cuello/diagnóstico por imagen
10.
Eur J Nucl Med Mol Imaging ; 51(2): 422-433, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37740742

RESUMEN

PURPOSE: Inflamed, prone-to-rupture coronary plaques are an important cause of myocardial infarction and their early identification is crucial. Atherosclerotic plaques are characterized by overexpression of the type-2 somatostatin receptor (SST2) in activated macrophages. SST2 ligand imaging (e.g. with [68 Ga]Ga-DOTA-TOC) has shown promise in detecting and quantifying the inflammatory activity within atherosclerotic plaques. However, the sensitivity of standard axial field of view (SAFOV) PET scanners may be suboptimal for imaging coronary arteries. Long-axial field of view (LAFOV) PET/CT scanners may help overcome this limitation. We aim to assess the ability of [68 Ga]Ga-DOTA-TOC LAFOV-PET/CT in detecting calcified, SST2 overexpressing coronary artery plaques. METHODS: In this retrospective study, 108 oncological patients underwent [68 Ga]Ga-DOTA-TOC PET/CT on a LAFOV system. [68 Ga]Ga-DOTA-TOC uptake and calcifications in the coronary arteries were evaluated visually and semi-quantitatively. Data on patients' cardiac risk factors and coronary artery calcium score were also collected. Patients were followed up for 21.5 ± 3.4 months. RESULTS: A total of 66 patients (61.1%) presented with calcified coronary artery plaques. Of these, 32 patients had increased [68 Ga]Ga-DOTA-TOC uptake in at least one coronary vessel (TBR: 1.65 ± 0.53). Patients with single-vessel calcifications showed statistically significantly lower uptake (SUVmax 1.10 ± 0.28) compared to patients with two- (SUVmax 1.31 ± 0.29, p < 0.01) or three-vessel calcifications (SUVmax 1.24 ± 0.33, p < 0.01). There was a correlation between coronary artery calcium score (CACS) and [68 Ga]Ga-DOTA-TOC uptake, especially in the LAD (p = 0.02). Stroke and all-cause death occurred more frequently in patients with increased [68 Ga]Ga-DOTA-TOC uptake (15.63% vs. 0%; p:0.001 and 21.88% vs. 6.58%; p: 0.04, respectively) during the follow-up period. CONCLUSION: [68 Ga]Ga-DOTA-TOC as a marker for the macrophage activity can reveal unknown cases of inflamed calcified coronary artery plaques using a LAFOV PET system. [68 Ga]Ga-DOTA-TOC uptake increased with the degree of calcification and correlated with higher risk of stroke and all-cause death. [68 Ga]Ga-DOTA-TOC LAFOV PET/CT may be useful to assess patients' cardiovascular risk.


Asunto(s)
Compuestos Organometálicos , Placa Aterosclerótica , Accidente Cerebrovascular , Humanos , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Vasos Coronarios/diagnóstico por imagen , Octreótido , Estudios Retrospectivos , Calcio , Placa Aterosclerótica/diagnóstico por imagen , Inflamación/diagnóstico por imagen
11.
EJNMMI Res ; 13(1): 104, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38032409

RESUMEN

BACKGROUND: Until recently, quantitation of the net influx of 2-[18F]fluorodeoxyglucose (FDG) to brain (Ki) and the cerebrometabolic rate for glucose (CMRglc) required serial arterial blood sampling in conjunction with dynamic positron emission tomography (PET) recordings. Recent technical innovations enable the identification of an image-derived input function (IDIF) from vascular structures, but are frequently still encumbered by the need for interrupted sequences or prolonged recordings that are seldom available outside of a research setting. In this study, we tested simplified methods for quantitation of FDG-Ki by linear graphic analysis relative to the descending aorta IDIF in oncology patients examined using a Biograph Vision 600 PET/CT with continuous bed motion (Aarhus) or using a recently installed Biograph Vision Quadra long-axial field-of-view (FOV) scanner (Bern). RESULTS: Correlation analysis of the coefficients of a tri-exponential decomposition of the IDIFs measured during 67 min revealed strong relationships among the total area under the curve (AUC), the terminal normalized arterial integral (theta(52-67 min)), and the terminal image-derived arterial FDG concentration (Ca(52-67 min)). These relationships enabled estimation of the missing AUC from late recordings of the IDIF, from which we then calculated FDG-Ki in brain by two-point linear graphic analysis using a population mean ordinate intercept and the single late frame. Furthermore, certain aspects of the IDIF data from Aarhus showed a marked age-dependence, which was not hitherto reported for the case of FDG pharmacokinetics. CONCLUSIONS: The observed interrelationships between pharmacokinetic parameters in the IDIF measured during the PET recording support quantitation of FDG-Ki in brain using a single averaged frame from the interval 52-67 min post-injection, with minimal error relative to calculation from the complete dynamic sequences.

12.
Nucl Med Commun ; 44(11): 988-996, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37578376

RESUMEN

OBJECTIVES: The objective of this study was to evaluate the influence of a long-axial field-of-view (LAFOV) on stage migration using a large single-centre retrospective cohort in lymphoma and non-small cell lung cancer (NSCLC). METHODS: A retrospective study is performed for patients undergoing PET/computed tomography (CT) on either a short-axial field-of-view (SAFOV) or LAFOV PET/CT system for the staging of known or suspected NSCLC or for therapeutic response in lymphoma. The primary endpoint was the Deauville therapy response score for patients with lymphoma for the two systems. Secondary endpoints were the American Joint Committee on Cancer stage for NSCLC, the frequency of cN3 and cM1 findings, the probability for a positive nodal staging (cN1-3) for NSCLC and the diagnostic accuracy for nodal staging in NSCLC. RESULTS: One thousand two hundred eighteen records were screened and 597 patients were included for analysis ( N  = 367 for lymphoma and N  = 291 for NSCLC). For lymphoma, no significant differences were found in the proportion of patients with complete metabolic response versus non-complete metabolic response Deauville response scores ( P  = 0.66). For NSCLC no significant differences were observed between the two scanners for the frequency of cN3 and cM1 findings, for positive nodal staging, neither the sensitivity nor the specificity. CONCLUSIONS: In this study use of a LAFOV system was neither associated with upstaging in lymphoma nor NSCLC compared to a digital SAFOV system. Diagnostic accuracy was comparable between the two systems in NSCLC despite shorter acquisition times for LAFOV.

14.
Cancer Imaging ; 23(1): 28, 2023 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-36934273

RESUMEN

Recently introduced long-axial field-of-view (LAFOV) PET/CT systems represent one of the most significant advancements in nuclear medicine since the advent of multi-modality PET/CT imaging. The higher sensitivity exhibited by such systems allow for reductions in applied activity and short duration scans. However, we consider this to be just one small part of the story: Instead, the ability to image the body in its entirety in a single FOV affords insights which standard FOV systems cannot provide. For example, we now have the ability to capture a wider dynamic range of a tracer by imaging it over multiple half-lives without detrimental image noise, to leverage lower radiopharmaceutical doses by using dual-tracer techniques and with improved quantification. The potential for quantitative dynamic whole-body imaging using abbreviated protocols potentially makes these techniques viable for routine clinical use, transforming PET-reporting from a subjective analysis of semi-quantitative maps of radiopharmaceutical uptake at a single time-point to an accurate and quantitative, non-invasive tool to determine human function and physiology and to explore organ interactions and to perform whole-body systems analysis. This article will share the insights obtained from 2 years' of clinical operation of the first Biograph Vision Quadra (Siemens Healthineers) LAFOV system. It will also survey the current state-of-the-art in PET technology. Several technologies are poised to furnish systems with even greater sensitivity and resolution than current systems, potentially with orders of magnitude higher sensitivity. Current barriers which remain to be surmounted, such as data pipelines, patient throughput and the hindrances to implementing kinetic analysis for routine patient care will also be discussed.


Asunto(s)
Medicina Nuclear , Tomografía Computarizada por Tomografía de Emisión de Positrones , Humanos , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Radiofármacos , Cinética , Tomografía de Emisión de Positrones/métodos
15.
Ann Nucl Med ; 37(5): 310-315, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36913094

RESUMEN

OBJECTIVE: Long axial field-of-view (LAFOV) PET/CT showed improved performance resulting from higher sensitivity. The aim was to quantify the impact of using the full acceptance angle (UHS) in image reconstructions with the Biograph Vision Quadra LAFOV PET/CT (Siemens Healthineers) compared to the limited acceptance angle (high sensitivity mode, HS). METHODS: 38 oncological patients examined on a LAFOV Biograph Vision Quadra PET/CT were analysed. 15 patients underwent [18F]FDG-PET/CT, 15 patients underwent [18F]PSMA-1007 PET/CT, and 8 patients underwent [68Ga]Ga-DOTA-TOC PET/CT. Signal-to-noise ratio (SNR) and standardised uptake values (SUVmean/max/peak) were used to compare UHS and HS with different acquisition times. RESULTS: The SNR was significantly higher for UHS compared to HS over all acquisition times (SNR UHS/HS [18F]FDG: 1.35 ± 0.02, p < 0.001; [18F]PSMA-1007: 1.25 ± 0.02, p < 0.001; [68Ga]Ga-DOTA-TOC: 1.29 ± 0.02, p < 0.001). CONCLUSION: UHS showed significantly higher SNR opening the possibility of halving short acquisition times. This is of advantage in further reduction of whole-body PET/CT acquisition.


Asunto(s)
Fluorodesoxiglucosa F18 , Tomografía Computarizada por Tomografía de Emisión de Positrones , Humanos , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Radioisótopos de Galio , Tomografía de Emisión de Positrones
16.
Eur J Nucl Med Mol Imaging ; 50(4): 1168-1182, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36504278

RESUMEN

PURPOSE: The image quality characteristics of two NEMA phantoms with yttrium-90 (90Y) were evaluated on a long axial field-of-view (AFOV) PET/CT. The purpose was to identify the optimized reconstruction setup for the imaging of patients with hepatocellular carcinoma after 90Y radioembolization. METHODS: Two NEMA phantoms were used, where one had a 1:10 sphere to background activity concentration ratio and the second had cold background. Reconstruction parameters used are as follows: iterations 2 to 8, Gaussian filter 2- to 6-mm full-width-at-half-maximum, reconstruction matrices 440 × 440 and 220 × 220, high sensitivity (HS), and ultra-high sensitivity (UHS) modes. 50-, 40-, 30-, 20-, 10-, and 5-min acquisitions were reconstructed. The measurements included recovery coefficients (RC), signal-to-noise ratio (SNR), background variability, and lung error which measures the residual error in the corrections. Patient data were reconstructed with 20-, 10-, 5-, and 1-min time frames and evaluated in terms of SNR. RESULTS: The RC for the hot phantom was 0.36, 0.45, 0.53, 0.63, 0.68, and 0.84 for the spheres with diameters of 10, 13, 17, 22, 28, and 37 mm, respectively, for UHS 2 iterations, a 220 × 220 matrix, and 50-min acquisition. The RC values did not differ with acquisition times down to 20 min. The SNR was the highest for 2 iterations, measured 11.7, 16.6, 17.6, 19.4, 21.9, and 27.7 while the background variability was the lowest (27.59, 27.08, 27.36, 26.44, 30.11, and 33.51%). The lung error was 18%. For the patient dataset, the SNR was 19%, 20%, 24%, and 31% higher for 2 iterations compared to 4 iterations for 20-, 10-, 5-, and 1-min time frames, respectively. CONCLUSIONS: This study evaluates the NEMA image quality of a long AFOV PET/CT scanner with 90Y. It provides high RC for the smallest sphere compared to other standard AFOV scanners at shorter scan times. The maximum patient SNR was for 2 iterations, 20 min, while 5 min delivers images with acceptable SNR.


Asunto(s)
Neoplasias Hepáticas , Tomografía Computarizada por Tomografía de Emisión de Positrones , Humanos , Tomografía de Emisión de Positrones/métodos , Radioisótopos de Itrio/uso terapéutico , Fantasmas de Imagen , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Hepáticas/radioterapia
18.
J Cereb Blood Flow Metab ; 43(4): 581-594, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36420769

RESUMEN

[18F]MK-6240 meningeal/extracerebral off-target binding may impact tau quantification. We examined the kinetics and longitudinal changes of extracerebral and reference regions. [18F]MK-6240 PET was performed in 24 cognitively-normal and eight cognitively-impaired subjects, with arterial samples in 13 subjects. Follow-up scans at 6.1 ± 0.5 (n = 25) and 13.3 ± 0.9 (n = 16) months were acquired. Extracerebral and reference region (cerebellar gray matter (CerGM)-based, cerebral white matter (WM), pons) uptake were evaluated using standardized uptake values (SUV90-110), spectral analysis, and distribution volume. Longitudinal changes in SUV90-110 were examined. The impact of reference region on target region outcomes, partial volume correction (PVC) and regional erosion were evaluated. Eroded WM and pons showed lower variability, lower extracerebral contamination, and lower longitudinal changes than CerGM-based regions. CerGM-based regions resulted larger cross-sectional effect sizes for group differentiation. Extracerebral signal was high in 50% of subjects and exhibited irreversible kinetics and nonsignificant longitudinal changes over one-year but was highly variable at subject-level. PVC resulted in higher variability in reference region uptake and longitudinal changes. Our results suggest that eroded CerGM may be preferred for cross-sectional, whilst eroded WM or pons may be preferred for longitudinal [18F]MK-6240 studies. For CerGM, erosion was necessary (preferred over PVC) to address the heterogenous nature of extracerebral signal.


Asunto(s)
Disfunción Cognitiva , Humanos , Estudios Transversales , Cinética , Tomografía de Emisión de Positrones/métodos , Estudios de Casos y Controles
19.
Eur J Nucl Med Mol Imaging ; 50(3): 951-956, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36136102

RESUMEN

PURPOSE: Performing 2-[18F]FDG PET/CT in addition to a PSMA-ligand PET/CT can assist in the detection of lesions with low PSMA expression and may help in prognostication and identification of patients who likely benefit from PSMA-radioligand therapy (PSMA-RLT). However, the cost and time needed for a separate PET/CT examination might hinder its routine implementation. In this communication, we present our initial experiences with additional low-dose 2-[18F]FDG PET/CT as part of a dual-tracer and same-day imaging protocol which exploits the higher sensitivity exhibited by long-axial field-of-view (LAFOV) and total-body PET/CT systems and demonstrates its feasibility. METHODS: Fourteen patients referred for evaluation for PSMA-RLT received [68 Ga]Ga-PSMA-11 PET/CT at 1 h p.i. with a standard activity of 150 MBq and an additional low-dose 2-[18F]FDG PET/CT with 40 MBq 1 h thereafter using a long-axial field-of-view PET/CT system in a single sitting and as per institutional protocol. Scans were scrutinized by two experienced nuclear medicine physicians for mismatch findings. RESULTS: The combined protocol identified additional lesions with low or absent PSMA-expression but high FDG-avidity in 1/14 (7%) patients. The protocol was easily implemented and well tolerated by all patients. CONCLUSION: Additional low-dose 2-[18F]FDG-PET/CT is feasible as part of a same-day imaging protocol and can help reveal lesions of low PSMA avidity as part of therapy assessment for [177Lu]-PSMA radioligand therapy and demonstrates higher sensitivity compared to [68 Ga]Ga-PSMA-11 PET/CT alone in some patients.


Asunto(s)
Fluorodesoxiglucosa F18 , Tomografía Computarizada por Tomografía de Emisión de Positrones , Humanos , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Radiofármacos/uso terapéutico , Radioisótopos , Radioisótopos de Galio
20.
Eur J Nucl Med Mol Imaging ; 50(2): 257-265, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36192468

RESUMEN

BACKGROUND: Accurate kinetic modeling of 18F-fluorodeoxyglucose ([18F]-FDG) positron emission tomography (PET) data requires accurate knowledge of the available tracer concentration in the plasma during the scan time, known as the arterial input function (AIF). The gold standard method to derive the AIF requires collection of serial arterial blood samples, but the introduction of long axial field of view (LAFOV) PET systems enables the use of non-invasive image-derived input functions (IDIFs) from large blood pools such as the aorta without any need for bed movement. However, such protocols require a prolonged dynamic PET acquisition, which is impractical in a busy clinical setting. Population-based input functions (PBIFs) have previously shown potential in accurate Patlak analysis of [18F]-FDG datasets and can enable the use of shortened dynamic imaging protocols. Here, we exploit the high sensitivity and temporal resolution of a LAFOV PET system and explore the use of PBIF with abbreviated protocols in [18F]-FDG total body kinetic modeling. METHODS: Dynamic PET data were acquired in 24 oncological subjects for 65 min following the administration of [18F]-FDG. IDIFs were extracted from the descending thoracic aorta, and a PBIF was generated from 16 datasets. Five different scaled PBIFs (sPBIFs) were generated by scaling the PBIF with the AUC of IDIF curve tails using various portions of image data (35-65, 40-65, 45-65, 50-65, and 55-65 min post-injection). The sPBIFs were compared with the IDIFs using the AUCs and Patlak Ki estimates in tumor lesions and cerebral gray matter. Patlak plot start time (t*) was also varied to evaluate the performance of shorter acquisitions on the accuracy of Patlak Ki estimates. Patlak Ki estimates with IDIF and t* = 35 min were used as reference, and mean bias and precision (standard deviation of bias) were calculated to assess the relative performance of different sPBIFs. A comparison of parametric images generated using IDIF and sPBIFs was also performed. RESULTS: There was no statistically significant difference between AUCs of the IDIF and sPBIFs (Wilcoxon test: P > 0.05). Excellent agreement was shown between Patlak Ki estimates obtained using sPBIF and IDIF. Using the sPBIF55-65 with the Patlak model, 20 min of PET data (i.e., 45 to 65 min post-injection) achieved < 15% precision error in Ki estimates in tumor lesions compared to the estimates with the IDIF. Parametric images reconstructed using the IDIF and sPBIFs with and without an abbreviated protocol were visually comparable. Using Patlak Ki generated with an IDIF and 30 min of PET data as reference, Patlak Ki images generated using sPBIF55-65 with 20 min of PET data (t* = 45 min) provided excellent image quality with structural similarity index measure > 0.99 and peak signal-to-noise ratio > 55 dB. CONCLUSION: We demonstrate the feasibility of performing accurate [18F]-FDG Patlak analysis using sPBIFs with only 20 min of PET data from a LAFOV PET scanner.


Asunto(s)
Fluorodesoxiglucosa F18 , Neoplasias , Humanos , Estudios de Factibilidad , Tomografía de Emisión de Positrones/métodos , Arterias , Neoplasias/diagnóstico por imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...